
TorKameleon: Improving Tor’s Censorship
Resistance with K-anonymization and Media-based

Covert Channels
Afonso Vilalonga

NOVA LINCS & DI,
FCT, Universidade NOVA de Lisboa

j.vilalonga@campus.fct.unl.pt

João S. Resende
NOVA LINCS & DI,

Universidade do Porto
jresende@fc.up.pt

Henrique Domingos
NOVA LINCS & DI,

FCT, Universidade NOVA de Lisboa
hj@fct.unl.pt

Abstract—Anonymity networks like Tor significantly enhance
online privacy but are vulnerable to correlation attacks by
state-level adversaries. While covert channels encapsulated in
media protocols, particularly WebRTC-based encapsulation, have
demonstrated effectiveness against passive traffic correlation
attacks, their resilience against active correlation attacks remains
unexplored, and their compatibility with Tor has been limited.
This paper introduces TorKameleon, a censorship evasion solu-
tion designed to protect Tor users from both passive and ac-
tive correlation attacks. TorKameleon employs K-anonymization
techniques to fragment and reroute traffic through multiple
TorKameleon proxies, while also utilizing covert WebRTC-based
channels or TLS tunnels to encapsulate user traffic.

Index Terms—Censorship Circumvention, Tor, Traffic Encap-
sulation, WebRTC, Traffic Correlation Attacks, K-anonymization

I. INTRODUCTION

Tor is a widely used anonymization network that operates
based on the Onion Routing protocol [1]. Its primary objective
is to provide low-latency communication while preserving user
anonymity. This is achieved by establishing network paths
called Tor circuits, which typically consist of three nodes
known as Tor relays. Routing traffic through the Tor circuits
decouples the user’s incoming and outgoing traffic, theoreti-
cally rendering them unlinkable and reducing the likelihood
of an attacker correlating the two, thereby preserving user
anonymity with regard to what they are accessing online.
However, in practice, Tor exposes vulnerabilities, particularly
in the context of deanonymization attacks [2]–[8]. Studies have
demonstrated the effectiveness of statistical analysis, machine
learning, and deep learning models in identifying similarities
between incoming and outgoing Tor network flows, making
many Tor circuits susceptible to passive correlation attacks [9].
This concern is magnified when considering authoritarian
regimes and states with the resources to control extensive
autonomous systems (ASs) and deploy large-scale censorship
mechanisms and apparatus that use such deanonymization
attacks.

The Tor Project has developed techniques to mitigate such
vulnerabilities, primarily by introducing pluggable transports
into the network. Pluggable transports are software compo-

nents that mask the Tor traffic exchanged between the user
and the Tor entry relay of the circuit (i.e., the Tor Bridge)
by randomizing it, encapsulating it, or employing other traf-
fic obfuscation techniques. By modifying or concealing the
characteristics of incoming traffic, the expectation is that any
attempt to correlate it with outgoing traffic will be rendered
ineffective. While numerous pluggable transports have been
developed and continue to undergo refinement, it is important
to emphasize that even the most well-known and widely used
ones have shown vulnerability to correlation attacks and other
deanonymization methods [10]–[13].

These vulnerabilities have prompted researchers to explore
alternative systems resistant to correlation attacks and develop
new solutions for evading internet censorship. One promising
research direction involves traffic encapsulation, where traffic
is concealed within a covert carrier, such as another protocol.
Several solutions have emerged using media protocols [14]–
[17], with two advanced systems employing WebRTC as
their protocol carrier [18], [19]. The widespread adoption and
dissemination of WebRTC make it inconspicuous and less
likely to be blocked by censors due to potential collateral
repercussions. These two WebRTC-based censorship evasion
systems, Protozoa and Stegozoa, have demonstrated resilience
against passive correlation attacks. However, they face chal-
lenges related to integration with the Tor network, deployment
complexity, and the need for testing against the growing and
potent trend of active correlation attacks employed by censors,
aiming to inject watermarks like temporal delays into traffic
at specific network segments with the aim of propagating
throughout the network and becoming detectable elsewhere.

In this paper, our goals are simple: I) To test the effective-
ness of WebRTC in resisting state-of-the-art active correlation
attacks; II) To develop an evasion system capable of resisting
both active and passive state-of-the-art correlation attacks
employed by current censors while maintaining reasonable
performance for low-throughput Internet tasks; III) To ensure
full compatibility of the system with the Tor network by
developing it as a pluggable transport. To achieve these goals,
we have developed TorKameleon, a Tor pluggable transport
that can encapsulate Tor traffic within WebRTC video confer-



ence streams and TLS tunnels, enabling a greater diversity of
traffic flowing through the network. Furthermore, it enables the
creation of a pre-Tor network consisting of K TorKameleon
proxies. This network facilitates the fragmentation and routing
of user traffic among the proxies, employing a multipath
strategy that blends user traffic with that of K other users, a
technique referred to as K-anonymization. TorKameleon can
withstand passive and active correlation attacks simulating the
deanonymization efforts of a state-level adversary, all while
maintaining reasonable throughput for low-throughput Internet
tasks. The contributions of this work can be summarized as
follows: I) A complete specification of the TorKameleon sys-
tem; II) An implementation of the designed solution available
as an open-source prototype [20]; III) A comprehensive experi-
mental evaluation of the system, assessing its performance and
unobservability against active and passive correlation attacks.

The rest of this article is structured as follows: Section II
presents related work. Section III details the TorKameleon
system model. Section IV focuses on preliminary performance
and correlation attack resistance evaluation. Finally, Section V
summarizes findings and discusses future research directions.

II. BACKGROUND AND RELATED WORK

Over the years, research has emphasized anonymization
systems to evade censorship and counter deanonymization at-
tacks, resulting in the development of various techniques. This
section explores correlation attacks and their countermeasures,
such as media-based protocols and K-anonymization systems.

A. Correlation Attacks
Correlation attacks are techniques used to extract informa-

tion and create user profiles of specific targets or deanonymize
communicating endpoints within a network [3]–[8]. These
attacks can be executed by state-level adversaries who control
multiple AS regions and collaborate with organizations like
internet service providers (ISPs). In the context of Tor, an
attacker controlling both the entry and the exit Tor relays in a
circuit will attempt to correlate inbound and outbound traffic
to identify which pairs of flows belong to the same overall
flow. To achieve this, the attacker analyzes metadata such as
inter-packet arrival times, packet lengths, and volumes [8].
Using this information, attackers can confirm with a high
degree of probability that a particular user is accessing a
specific web service. Passive correlation attacks [3], [5], [7],
[8] involve passively observing and collecting traffic to later
correlate it and deanonymize the target, while active corre-
lation attacks [4], [6] inject a watermark or fingerprint into
packets with the hope that it propagates through the network
and becomes observable elsewhere, uniquely identifying the
traffic flow’s origin or that the flow was watermarked. This
watermark or fingerprint consists of a recognizable pattern
inserted into the traffic as it passes through a specific point
in the network, such as a temporal delay.

B. Multipath and K-Anonymization
The principle of K-anonymization originated as a method to

anonymize database records [21] and has since been extended

to various domains with the aim of reducing the probability of
correct identification by attackers to at most 1/K. TorK [22]
and Tir [23] are K-anonymization systems designed for Tor
traffic. Tir also enables the utilization of a multipath routing
and traffic fragmentation strategy across a network of K
proxies. They achieve high throughputs (12 Mbps for TorK and
1.6 Mbps for Tir) while remaining undetected against passive
correlation attacks. However, these systems have only under-
gone testing against passive correlation attacks. Additionally,
using TorK and Tir can be complex, as they necessitate
maintaining a constant group of users to preserve the K set,
with potential failures that could result in information leaks
through traffic analysis.

C. Media Protocol Tunneling

Media tunneling solutions utilize media protocols such as
video and audio streams to embed covert data. These solu-
tions provide improved alternatives for bypassing censorship.
FreeWave [14] is a circumvention tool that leverages audio
signals from VoIP connections to tunnel hidden Internet traffic,
achieving a throughput of 19.2 kbps. Facet [15] enables users
to watch videos by tunneling them through video conferences
via Skype, offering a maximum throughput of 471 kbps.
CovertCast [16] transforms website content into videos and
streams them via popular platforms such as YouTube, offering
a method to bypass censorship with a throughput of 168
kbps. DeltaShaper [17] facilitates the covert transmission of
TCP/IP traffic by tunneling the traffic through Skype, achiev-
ing a throughput of 7 kbps. However, it is worth noting that
CovertCast, Facet, and DeltaShaper can be detected with over
90% accuracy, and FreeWave can be easily identified through
audio signal analysis or intentional disruptions in communi-
cation [8], [24]. WebRTC tunneling, the recent state-of-the-
art in covert traffic media encapsulation, utilizes the WebRTC
stack to establish covert channels. Protozoa [18], a censorship
evasion tool, employs WebRTC-based media streaming web
apps for covert IP packet encapsulation, offering unobserv-
ability, unblockability, and high throughput (approximately
1.4 Mbps). Stegozoa [19], an extension of Protozoa, employs
steganography to hide data within video streams, ensuring
unobservability even against malicious gateways, achieving a
throughput of roughly 8.2 kbps. Snowflake [25], a Tor plug-
gable transport, communicates with temporary web browser-
based proxies via WebRTC data channels, which are designed
for arbitrary data transmission (unlike Protozoa and Stegozoa,
which use the video streaming channel), achieving throughput
ranging from 1.5 Mbps to 1.7 Mbps [26]. However, it is
susceptible to detection through traffic analysis [10], [11]. Pro-
tozoa and Stegozoa resist passive correlation attacks but have
not been tested against active correlation attacks. Furthermore,
deploying them can pose challenges, necessitating users to
compile the Chromium browser, and they lack compatibility
with Tor



D. TorKameleon Comparison

TorKameleon is an innovative censorship evasion system
that leverages the strengths of K-anonymization and Web-
RTC media tunneling. Notably, it enhances Tor’s resistance
against deanonymization attacks by functioning as a fully Tor-
compatible pluggable transport. To the best of our knowledge,
in contrast to the previously described systems, TorKameleon
has undergone rigorous testing against active correlation at-
tacks, enabling the assessment of WebRTC encapsulation’s
resilience against these attacks. While providing performance
comparable to the previously mentioned systems, we offer a
highly configurable solution that is fully compatible with Tor
and resilient against both active and passive correlation attacks,
making it easily deployable in real-world scenarios.

III. TORKAMELEON

In this section, we provide an overview of the inner work-
ings of the TorKameleon system and discuss the assumed
threat model.

A. System Model

The TorKameleon system operates in three modes: I) Plug-
gable Transport Mode: Users connect to the Tor Bridge via
the TorKameleon pluggable transport, exchanging Tor traffic
encapsulated in WebRTC video conferences or TLS tunnels;
II) Standalone Mode: Users, either individually or in groups,
deploy TorKameleon proxies to fragment and route user traffic
across multiple paths composed of multiple proxies using
encapsulation channels; III) Combined Mode: User traffic is
routed through the proxy network before being sent to the Tor
network via the pluggable transport. We provide an overview
of the system in Figure 1.

Fig. 1: System Model and Workflow of the TorKameleon
Ecosystem. When using the pluggable transport without
proxies, the user establishes a direct connection to the
TorKameleon Tor Bridge through the TorKameleon pluggable
transport client-side, which operates on the user’s local device.

Consider Alice in a censored region. Alice begins by con-
figuring a network path of proxies or letting the TorKameleon
gateway software (our local client software) determine the
path. Next, Alice connects to the first TorKameleon proxy
using the TorKameleon gateway, either through a TLS tunnel
or a covert WebRTC channel in a video conference. Alice’s

traffic can now be routed through covert connections to other
proxies in the TorKameleon network. These covert connections
also use TLS tunneling or WebRTC-based channels. Alter-
natively, Alice’s traffic can go directly to the Tor network
via our TorKameleon Tor Bridge. Each TorKameleon proxy
runs the Tor daemon and TorKameleon pluggable transport
client software locally. When Alice’s traffic is intended for
the Tor network, the proxy forwards it to the local Tor
daemon. From there, it is sent to the TorKameleon client-side
pluggable transport, which then transmits it to the connected
TorKameleon Tor Bridge via a covert channel. Upon arrival at
the TorKameleon Tor Bridge, the traffic is decapsulated and
subsequently forwarded into the Tor network.

B. Threat Model

We consider a state-level adversary with the capability to
collaborate with entities such as ISPs and other governments.
The primary objective of the censor is to identify and block
the use of TorKameleon while minimizing any impact on
legitimate WebRTC and TLS connections. The censor can
monitor, capture, and analyze all network traffic originating
from the user, TorKameleon proxies, TorKameleon bridges,
and the Tor network, as long as the network segments accessed
fall within its jurisdiction or that of the involved adversary
parties. We also assume that the censor can employ active
correlation attacks, utilizing watermarking. However, the soft-
ware installed on users’ devices, TorKameleon Tor bridges,
and proxies is assumed to be uncompromised, and no intrusive
actions are performed within these systems. Additionally, we
assume that the censor does not engage in widespread blocking
or disruption of WebRTC traffic or TLS communications. Such
actions would cause significant collateral damage and nega-
tively impact legitimate users and services that rely on these
protocols. Furthermore, we assume that the adversary does
not have the capability to operate controlled TorKameleon
nodes and does not have access to the clear video stream (i.e.,
unencrypted video stream).

C. System Architecture

TorKameleon consists of two subsystems that operate simi-
larly: the TorKameleon proxy and the TorKameleon pluggable
transport. The TorKameleon pluggable transport is a bundle
of software comprising the client-side pluggable transport
(cs-pt) and the server-side pluggable transport (ss-pt). Both
systems consist of five main components: the WebRTC en-
coder and decoder, the TLS tunnel, the SOCKS5 proxy, and
the controller. These components work seamlessly together,
with minor differences between the proxy and the pluggable
transport, across three operational stages: the covert channel
establishment stage, the encapsulation stage, and the network-
ing stage (similar to both Protozoa and Stegozoa).

a) Covert Channel Establishment Stage: The establish-
ment of the covert channel plays a pivotal role within the
TorKameleon system. Depending on the system configuration,
the controller establishes either a TLS tunnel or a WebRTC
covert channel. For the TLS tunnel, a messaging protocol to



establish an SSL Tunnel is required. However, for the WebRTC
covert channel, the WebRTC-based video conferencing appli-
cation must be initialized, including the signaling protocol.
This allows the TorKameleon proxies, or the cs-pt and ss-
pt, to establish a video conference and consequently send
encapsulated data (further details in Section III-D). In the case
of the proxy, the controller is also responsible for managing
the proxies chosen for the multipath circuits.

b) Encapsulation Stage: The TLS and WebRTC encap-
sulation components are critical elements of the TorKameleon
system, performing essential tasks related to encapsulating and
decapsulating covert traffic. The TLS component is responsible
for managing and routing traffic to the TLS tunnel through the
Stunnel system. The WebRTC encoder is tasked with encoding
user or Tor traffic into WebRTC video frames, while the
WebRTC decoder handles the decoding of encapsulated traffic.
Packets to be encoded are placed in a queue until a frame
is available for encoding. The WebRTC encoding mechanism
includes fragmentation and reassembly mechanisms required
for the proper reordering of encapsulated packets.

c) Networking Stage: Regarding the networking stage
of the TorKameleon pluggable transport, the Tor daemon
transmits Tor traffic to the cs-pt (which runs on the user’s
device or the TorKameleon proxy) through a SOCKS5 proxy.
On the other hand, the ss-pt (which operates on the Tor bridge)
employs a reverse proxy to establish a connection with the Tor
daemon, enabling the routing of traffic throughout the rest of
the Tor network. The TorKameleon proxy uses default sockets
to establish connections between user applications and the
locally running proxy software (the TorKameleon gateway).
Additionally, support for the SOCKS5 protocol between the
application and the TorKameleon gateway is also provided.

D. WebRTC-based Encapsulation

To encapsulate traffic within a WebRTC video conference
stream, we have created a browser-based video conferencing
web app using the WebRTC technology stack. This app utilizes
the widely supported WebRTC API found in most browsers,
enabling video conferencing between two participants. Using
the video stream as a channel for transmitting encapsulated
data, the WebRTC encapsulation component conceals hidden
traffic within the seemingly innocuous video traffic. This
process involves two main steps: web application initialization
and data encapsulation.

a) Web Application Initialization: We employ Node.js
servers to locally serve the code necessary to run the WebRTC
web application. Within our WebRTC application, two roles
exist: the initiator, responsible for initiating the conference
call, and the receiver, which awaits the initiator’s call. For
instance, when the cs-pt intends to establish a covert channel
with the ss-pt, the cs-pt controller component instructs the
ss-pt controller component to initiate the WebRTC web appli-
cation in receiver mode through a messaging protocol. After
confirmation, the cs-pt starts its WebRTC web application in
initiator mode. The signaling process then occurs, leading
to the establishment of the video conference. To automate

browser functions and access the WebRTC web application,
we have utilized the Selenium framework [27].

b) Data Encapsulation: In Figure 2, we outline the
WebRTC encapsulation process. It begins with the split of
the video stream into audio and video tracks, followed by the
insertion of the covert data. This data is obtained via Web-
Sockets between the TorKameleon software and the WebRTC
web application. The modified video track, now containing
encapsulated data, is then combined with the audio track to
create a new media stream. This traffic appears as regular
WebRTC traffic, effectively disguising its true nature from
censors. The new stream is subsequently sent to the other web
conference peer for later decapsulation. This is accomplished
using the WebRTC Insertable Streams API, which enables the
manipulation of video and audio frames.

Fig. 2: Workflow for encapsulating user traffic in WebRTC
video frames.

When the web application receives an array of X bytes
of data to be encapsulated from TorKameleon (with X being
user-configurable), it stores this array and waits for a video
frame to encapsulate the data. This array is referred to as a
“data block”. Two modes exist for embedding data blocks into
frames: ADD and REPLACE. In ADD mode, the data block is
appended to the frame without altering the existing content. It
integrates the entire data block into a single packet, attached
to a single video frame. In REPLACE mode, the data block
replaces the frame content while preserving the frame header.
This mode is more complex and may involve fragmenting the
data block based on the available video frame size.

IV. EXPERIMENTAL EVALUATION

This section provides initial tests of TorKameleon, assessing
its performance and resistance to passive and active corre-
lation attacks. While ongoing, these early results showcase
TorKameleon’s capabilities.

A. Setup

Our setup included five machines running Ubuntu 20.04.
Four of them were OVH virtual private servers (VPS) equipped
with Intel 8-core CPUs running at 2.4 GHz, 32 GB of RAM,
and a 2 Gbps bandwidth. The fifth system was a local one,
featuring an Intel i5-9300H CPU with 4 cores running at 2.4
GHz, 16 GB of RAM, and a 1 Gbps bandwidth. Except for
two, all were in different locations—France, UK, Canada, and
Portugal. In tests using the Tor network, we used a fixed set
of three circuit relays: the first in our control, the middle in



Germany, and the exit relay in the Netherlands. For perfor-
mance assessment, we evaluated both latency and throughput.
To measure throughput, we downloaded a 250 KB file from
an HTTP server running on the Canada VPS. Latency was
measured using the httping tool, which recorded the time to
receive the initial byte in response to an HTTP/HTTPS request.
We tested with multiple users, peaking at 50 in parallel,
corresponding to the daily Tor Bridge user numbers [28].
Each user operated within a Docker container. Latency results
averaged ten measurements; throughput averaged five. Each
test was repeated twice, with different data block sizes (536,
1050, 2078, and 4134 bytes), corresponding to 1, 2, 4, and
8 Tor cells (including header size). The results were then
compared to default Tor performance metrics.

B. Performance

Figure 3a illustrates the throughput of TorKameleon when
utilized as a pluggable transport with TLS encapsulation. As
depicted in the graph, minimal variation in throughput is
observed across different data block sizes. The throughput
values with only one user closely match those obtained in the
Tor metrics website for throughput [29] and in our baseline
validation (5128 Kbps). Figure 3b depicts the throughput
when utilizing WebRTC-based encapsulation with 50 users
incrementally added to the TorKameleon Tor Bridge. To man-
age load and prevent congestion, 5 clients utilize WebRTC-
based encapsulation (including the one from which we took
our measurements), while the remaining users employ TLS
tunneling. The graph presents throughput values for both
ADD and REPLACE modes across various data block sizes.
The results show reasonable throughput for basic internet
tasks, using WebRTC encapsulation, ranging from 108 Kbps
(REPLACE mode with 536 bytes) to 741 Kbps (ADD mode
with 4134 bytes). This is comparable to the related work
mentioned in Section II. The reduction in throughput compared
to the Tor default is attributed to limitations imposed by the
available frames per second for encapsulation, the frame size
for data replacement (particularly in REPLACE mode, which
is also why ADD mode outperforms REPLACE mode), and the
overhead of the encapsulation process.

(a) (b)

Fig. 3: Throughput graphs. (a): Throughput graph for TLS
encapsulation. (b): Throughput graph for WebRTC encapsula-
tion. A-ADD mode; R-REPLACE mode.

Figure 4a shows latency values for the TLS encapsula-
tion mode, while Figure 4b displays latency values for the

WebRTC-based encapsulation in both ADD and REPLACE
modes. Latency remains consistent across different data block
sizes, indicating similar performance. TLS latency values for
a single user closely align with the default Tor latency metrics
(400 ms) [29]. However, WebRTC encapsulation, in both
ADD and REPLACE modes, exhibits slightly higher latencies
compared to the default Tor, ranging from 529 ms (ADD mode
with 4134 bytes) to 655 ms (REPLACE mode with 536 bytes).
These latency values do not notably affect the usability of
TorKameleon for internet tasks like downloading files and
regular web browsing.

(a) (b)

Fig. 4: Latency graphs. (a): Latency graph for TLS encapsu-
lation. (b): Latency graph for WebRTC encapsulation. A-ADD
mode; R-REPLACE mode.

C. Resistance to Passive and Active Correlation Attacks

To evaluate passive correlation attack resistance, we em-
ployed the XGBoost classifier, consistent with prior state-of-
the-art research [8]. In Figure 5, we compare a single proxy
to a network of four proxies, all connected via TLS tunnels,
while observing only one proxy. We conclude that adding more
proxies increases the available paths for traffic rerouting and
reduces the volume of traffic passing through the monitored
proxy (assuming the attacker can’t access traffic from all
deployed proxies due to their geographic distribution). As
such, the TorKameleon system with a network of TorKameleon
proxies alone can effectively resist passive correlation attacks,
achieving an Area under the ROC Curve (AUC) of up to 0.59
with four proxies, akin to random guessing.

(a) (b)

Fig. 5: Passive correlation attacks. (a) Two proxies. (b) Four
proxies.

We evaluated active correlation attacks using TorMarker [6],
which injects watermarks into the traffic and uses deep



(a) (b)

Fig. 6: Active correlation attack result graphs for WebRTC
encapsulation in ADD and REPLACE mode with different data
block sizes (bytes). (a) False Positive Rate (FPR) graph. (b)
Accuracy rate graph.

learning to detect them. In this test, we exclusively utilize
TorKameleon as a pluggable transport with WebRTC encap-
sulation. In Figure 6, the results from the active correlation at-
tacks reveal two key findings: smaller data block sizes enhance
TorKameleon’s unobservability, resulting in reduced accuracy
and higher false positive rates (FPR); larger data block sizes
make the system more vulnerable. Additionally, differences
between REPLACE and ADD modes become more pronounced
with larger data block sizes, with REPLACE mode proving
more robust against watermarking attacks. TorKameleon main-
tains resistance against active correlation attacks when used
with data blocks of sizes 536 and 1050 bytes, based on our
defined thresholds of FPR not falling below 10% and accuracy
not exceeding 80% (based on an analysis of experimental
evaluations of other state-of-the-art tools [3], [5], [6]).

V. CONCLUSION

In this paper, we have introduced a novel censorship evasion
tool aimed at addressing Tor’s susceptibility to active and pas-
sive correlation attacks. TorKameleon utilizes multipath rout-
ing and traffic encapsulation via WebRTC media streams and
TLS tunnels, and it is available on GitHub as an open-source
project [20]. Furthermore, we demonstrated the results of We-
bRTC media encapsulation in the context of active correlation
attacks, highlighting its potential to enhance anonymization
systems like Tor. However, extending the current experimental
evaluation is a critical next step.

ACKNOWLEDGMENT

This work is supported by NOVA LINCS
(UIDB/04516/2020) with the financial support of FCT.IP.

REFERENCES

[1] Dingledine, R., Mathewson, N. & Syverson, P. Tor: The Second-
Generation Onion Router. 13th USENIX Security Symposium (USENIX
Security 04). (2004)

[2] Karunanayake, I., Ahmed, N., Malaney, R., Islam, R. & Jha, S. De-
Anonymisation Attacks on Tor: A Survey. IEEE Communications Sur-
veys & Tutorials. 23 (2021)

[3] Oh, S., Yang, T., Mathews, N., Holland, J., Rahman, M., Hopper, N.
& Wright, M. DeepCoFFEA: Improved Flow Correlation Attacks on
Tor via Metric Learning and Amplification. 2022 IEEE Symposium On
Security And Privacy (SP). (2022)

[4] Rezaei, F. & Houmansadr, A. FINN: Fingerprinting Network Flows
Using Neural Networks. Annual Computer Security Applications Con-
ference. (2021)

[5] Nasr, M., Bahramali, A. & Houmansadr, A. DeepCorr. Proceedings Of
The 2018 ACM SIGSAC Conference On Computer And Communications
Security. (2018)

[6] Horta, M. Tor K-Anonymity against deep learning watermarking attacks:
validating a Tor k-Anonimity input circuit enforcement against a deep
learning watermarking attack. (NOVA School of Science,2022)

[7] Guan, Z., Liu, C., Xiong, G., Li, Z. & Gou, G. FlowTracker: Improved
flow correlation attacks with denoising and contrastive learning. Com-
puters & Security. 125 (2023)

[8] Barradas, D., Santos, N. & Rodrigues, L. Effective Detection of Mul-
timedia Protocol Tunneling using Machine Learning. 27th USENIX
Security Symposium (USENIX Security 18). (2018)

[9] Nithyanand, R., Starov, O., Zair, A., Gill, P. & Schapira, M. Measuring
and mitigating AS-level adversaries against Tor. CoRR. abs/1505.05173
(2015)

[10] Chen, J., Cheng, G. & Mei, H. F-ACCUMUL: A Protocol Fingerprint
and Accumulative Payload Length Sample-Based Tor-Snowflake Traffic-
Identifying Framework. Applied Sciences. 13 (2023)

[11] MacMillan, K., Holland, J. & Mittal, P. Evaluating Snowflake as an In-
distinguishable Censorship Circumvention Tool. CoRR. abs/2008.03254
(2020)

[12] Houmansadr, A., Brubaker, C. & Shmatikov, V. The Parrot Is Dead:
Observing Unobservable Network Communications. 2013 IEEE Sympo-
sium On Security And Privacy. (2013)

[13] Wang, L., Dyer, K., Akella, A., Ristenpart, T. & Shrimpton, T. See-
ing through Network-Protocol Obfuscation. Proceedings Of The 22nd
ACM SIGSAC Conference On Computer And Communications Security.
(2015)

[14] Houmansadr, A., Riedl, T., Borisov, N. & Singer, A. IP over Voice-over-
IP for censorship circumvention. (2012)

[15] Li, S., Schliep, M. & Hopper, N. Facet: Streaming over Videoconferenc-
ing for Censorship Circumvention. Proceedings Of The 13th Workshop
On Privacy In The Electronic Society. (2014)

[16] McPherson, R., Houmansadr, A. & Shmatikov, V. CovertCast: Using
Live Streaming to Evade Internet Censorship. Proceedings On Privacy
Enhancing Technologies. 2016 (2016)

[17] Barradas, D., Santos, N. & Rodrigues, L. DeltaShaper: Enabling Un-
observable Censorship-resistant TCP Tunneling over Videoconferencing
Streams. Proceedings On Privacy Enhancing Technologies. 2017 (2017)

[18] Barradas, D., Santos, N., Rodrigues, L. & Nunes, V. Poking a Hole
in the Wall: Efficient Censorship-Resistant Internet Communications by
Parasitizing on WebRTC. (Association for Computing Machinery,2020)

[19] Figueira, G., Barradas, D. & Santos, N. Stegozoa: Enhancing WebRTC
Covert Channels with Video Steganography for Internet Censorship
Circumvention. (2022)

[20] (https://github.com/AfonsoVilalonga/TorKameleon)
[21] Samarati, P. & Sweeney, L. Generalizing Data to Provide Anonymity

When Disclosing Information (Abstract). Proceedings Of The Seven-
teenth ACM SIGACT-SIGMOD-SIGART Symposium On Principles Of
Database Systems. (1998)

[22] Nunes, V. & Santos, N. Hardening Tor against State-Level Traffic
Correlation Attacks with K-Anonymous Circuits. (IST - University of
Lisbon,2021)

[23] Teixeira, J. & Domingos, H. Strengthening of Tor Against Traffic
Correlation with K-Anonymity Input Circuits. (Faculdade de Ciências e
Tecnologia Universidade Nova de Lisboa,2021)

[24] Geddes, J., Schuchard, M. & Hopper, N. Cover your ACKs: Pitfalls of
covert channel censorship circumvention. (2013)

[25] Tor SNOWFLAKE. (https://snowflake.torproject.org/), Accessed: 2023-
07-13

[26] Perform measurements to concretely understand snowflake
throughput and network health. (https://gitlab.torproject.org/tpo/anti-
censorship/pluggable-transports/snowflake/-/issues/32545), Accessed:
2023-07-13

[27] Selenium Selenium. (https://www.selenium.dev/), Accessed: 2023-03-24
[28] Matic, S., Troncoso, C. & Caballero, J. Dissecting Tor Bridges: A

Security Evaluation of their Private and Public Infrastructures. NDSS.
(2017)

[29] Project, T. Tor Metrics. (https://metrics.torproject.org/), Accessed: 2023-
03-24


