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Abstract. The use of anonymity networks such as Tor and similar tools
can greatly enhance the privacy and anonymity of online communica-
tions. Tor, in particular, is currently the most widely used system for
ensuring anonymity on the Internet. However, recent research has shown
that Tor is vulnerable to correlation attacks carried out by state-level
adversaries or colluding Internet censors. Therefore, new and more ef-
fective solutions emerged to protect online anonymity. Promising results
have been achieved by implementing covert channels based on media
traffic in modern anonymization systems, which have proven to be a reli-
able and practical approach to defend against powerful traffic correlation
attacks. In this paper, we present TorKameleon, a censorship evasion so-
lution that better protects Tor users from powerful traffic correlation
attacks carried out by state-level adversaries. TorKameleon can be used
either as a fully integrated Tor pluggable transport or as a standalone
anonymization system that uses K-anonymization and encapsulation of
user traffic in covert media channels. Our main goal is to protect users
from machine and deep learning correlation attacks on anonymization
networks like Tor. We have developed the TorKameleon prototype and
performed extensive validations to verify the accuracy and experimental
performance of the proposed solution in the Tor environment, includ-
ing state-of-the-art active correlation attacks. As far as we know, we are
the first to develop and study a system that uses both anonymization
mechanisms described above against active correlation attacks.

Keywords: Censorship Circunvention · Tor Network · Traffic Correla-
tion Attacks · WebRTC-based Traffic Encapsulation · K-anonymization

1 Introduction

Tor [1] is a low-latency anonymous network based on the Onion Routing protocol.
It provides anonymity to its users by using network paths (i.e., Tor circuits)
consisting of multiple nodes or proxies (i.e., Tor relays) to route traffic from the
user to its destination. In theory, this ensures unlikability between the incoming
flow and the corresponding outgoing flow leaving the Tor network.
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Anonymization systems like Tor aim to provide unobservability and prevent
detection while being unblockable for users [2]. However, Tor makes a tradeoff be-
tween usability and privacy. Tor alone does not obfuscate traffic characteristics,
which allows attackers to use statistical analysis and machine learning models
to identify pairs of input and output network flows that share similar charac-
teristics. Therefore, Tor is vulnerable to deanonymization attacks [3,4,5,6,7,8,9],
with a large percentage of circuits vulnerable to correlation attacks by network-
level and state-level adversaries. Specifically, 40% are vulnerable to network-level
adversaries, 42% to colluding network-level adversaries, and 85% to state-level
adversaries, with up to 95% in some countries [10].

The Tor project has developed pluggable transports to prevent deanony-
mization attacks against Tor and relay blocking. Pluggable transports use client-
side software to obfuscate Tor traffic on the user’s device, along with server-side
software on the entry Tor relay, to receive and deobfuscate traffic. This approach
randomizes and conceals the metadata and characteristics of incoming traffic and
makes it difficult to perform traffic correlation attacks. Pluggable transports
improve the privacy of the Tor network and make it more resilient to blocking
and censorship efforts.

However, most well-known pluggable transport systems [11,12,13] are vulner-
able to deanonymization attacks and therefore may be ineffective [14,15,16,17]
against a state-level adversary performing statistical analysis of traffic. To counter
this, new standalone anonymization systems [18,19] have been developed that
encapsulate traffic in media protocols and can resist passive correlation attacks.
However, these systems are independent of Tor and have not yet been tested
against active correlation attacks, in which an attacker disrupts the data stream
by altering its behavior. The effectiveness of these new systems against these
types of attacks has not yet been demonstrated.

To achieve the goal of defending against such attacks, we developed TorKame-
leon, an Internet censorship evasion tool that can be used as a fully integrated
Tor pluggable transport, as a standalone system, or by combining both modes.
It uses traffic encapsulation to hide Tor or user traffic in WebRTC [20] video
conferencing streams or TLS tunnels and also K-anonymization user input cir-
cuits to create networks of TorKameleon proxies and users where user traffic
can be fragmented and routed. We show that by encapsulating traffic in We-
bRTC video conferences alone, TorKameleon can withstand deep-learning-based
active correlation attacks from state-level adversaries while maintaining reason-
able throughput for low-throughput Internet tasks.

The contributions of this work can be summarised as follows: (1) A full spec-
ification of the TorKameleon system based on K-anonymization and WebRTC-
based covert channels or secure TLS tunneling; (2) An implementation of the
designed solution available as an open-source prototype; (3) A comprehensive ex-
perimental evaluation of the system in terms of performance and unobservability
against active correlation attacks.

The remainder of the article is organized as follows. Section 2 gives a back-
ground and related work on Tor pluggable transport, active correlation attacks,
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K-anonymization, and encapsulation in media traffic. Section 3 describes the
TorKameleon system model and its main features, and Section 4 describes the
prototype implementation. Section 5 presents the experimental evaluation and
Section 6 concludes the paper.

2 Related Work

Active and passive correlation attacks have become an increasingly pressing
problem for the Tor network and other anonymizing systems, especially given
the ability of large state organizations, such as intelligence agencies, to access the
Internet backbone and the ability of repressive regimes to control large portions
of the Internet. In this context, it is important to describe both passive and
active correlation attacks, as well as some of the mechanisms and approaches we
use that aim to defend against these types of attacks.

Passive and active correlation attacks Correlation attacks [4,6,8,9,7] refer
to techniques used to extract information and create user profiles of a specific
target or deanonymize communicating endpoints in a network. These attacks
can be carried out by state-level adversaries who control multiple autonomous
systems (AS) regions and collude with organizations such as ISPs. When it
comes to Tor, an attacker controlling both inbound and outbound Tor relays in
a circuit will attempt to correlate inbound and outbound traffic to determine
which pairs of flows are part of the same overall flow. By analyzing metadata such
as inter-packet arrival times, packet lengths, and volumes, the censor can confirm
with a high degree of probability that a particular user is using a particular Web
service. Passive correlation attacks [4,5,7] intercept traffic to obtain information,
while active correlation attacks [6,9] inject a watermark into packets to uniquely
identify traffic. This involves inserting a recognizable pattern into traffic passing
through a specific point in the network in the hope that the manipulated traffic
can be identified by the watermark at any network segment the attacker wishes
to observe.

Tor pluggable transports Over the years, there has been significant develop-
ment of Tor’s pluggable transports to mitigate correlation attacks [11,13,12].
Currently, the Tor project supports three pluggable transports [11], namely
Snowflake, Meek, and Obfs4. Although Meek and Obfs4 use different obfus-
cation methods, they both suffer from the same problem of being observable or
easily detected and blocked [16,17,21]. Snowflake also uses WebRTC to encapsu-
late data but uses data channels (which are normally used to transmit arbitrary
data) instead of media channels (which are used by our system). It has been
shown that Snowflake is not unobservable [15].

K-anonymization Samarati and Sweeney [22] proposed K-anonymization in
1998 as a method for anonymizing privacy-sensitive database records that must
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be disclosed. To ensure anonymity, the group record set must encompass a mini-
mum of K individuals. The same principle has been applied to different domains
so that the probability of an attacker correctly identifying the target is at most
1/K. Efforts have been made to develop K-anonymization systems for Tor traffic,
such as TorK [23] and Tir [24]. However, these systems have only been tested
against passive correlation attacks and are not currently deployed in the wild.

Media tunneling solutions Media tunneling encodes data into popular stream-
ing applications’ audio or video streams, allowing for covert data transmission,
and is commonly used to bypass Internet censorship. As media streaming proto-
cols make up a significant portion of online traffic [25,26], they are ideal for covert
data tunneling. However, many standalone systems [27,28,29,30] have not been
proven to withstand statistical analysis and deep packet inspection with machine
learning models [2,21]. Protozoa [18] and Stegozoa [19] are WebRTC-based so-
lutions that are resilient to current machine traffic analysis techniques, but they
have not been tested against active correlation attacks, are not integrated into
the Tor ecosystem, and are not easily deployable.

3 System Model

TorKameleon is a Tor pluggable transport that integrates WebRTC traffic en-
capsulation and TLS tunneling to securely transmit Tor traffic between the user
and TorKameleon Tor Bridges (Tor entry relays). In addition, it can be combined
with TorKameleon proxies to form a pre-Tor network of TorKameleon proxies to
route traffic between them and decouple user traffic from the user itself before
it is forwarded to the Tor network via a TorKameleon Tor Bridge.

Fig. 1. System model of the TorKameleon transport and the limitations of the state-
of-the-art. State-of-the-art on top and our system at the bottom.

The software package consists of three main components, namely the TorKa-
meleon Tor Bridge, the TorKameleon Proxy and the TorKameleon Gateway. The
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TorKameleon Gateway runs on the user’s device and serves as the primary inter-
face for accessing the TorKameleon proxies and bridges. The TorKameleon proxy
and TorKameleon bridge are used to set up proxies and bridges, respectively.

We can see in Figure 1 that one of the main advantages of the TorKameleon
pluggable transport over the state-of-the-art is the Tor integration and the im-
proved resilience of the Tor network to correlation attacks. A censor attempting
to correlate incoming and outgoing Tor network flows can render its efforts inef-
fective through the WebRTC encapsulation mechanism. Attempting to correlate
inbound WebRTC encapsulated traffic with outbound TLS traffic is a difficult
challenge against modern deep learning-based correlation attacks, even more so
if the traffic was routed through the Tor network.

In Figure 2, we see the normal workflow of the TorKameleon solution when
used both as a pluggable transport and as a pre-Tor network of TorKameleon
proxies (what we call the TorKameleon environment). First (1)) user A sets the
network path to be used by the TorKameleon gateway. Then (2)) a connection is
established to the first proxy through a TLS tunnel or a covert WebRTC channel
embedded in a video conference between the TorKameleon gateway and the
TorKameleon proxy. Then (3)) a second connection is established between the
first proxy and the second proxy, also over a covert WebRTC channel embedded
in a video conference or TLS tunnel. This process is repeated as many times as
there are proxies in the network path established by the TorKameleon gateway.
Then (4)) the last TorKameleon proxy sends the user traffic, now as Tor traffic, to
the TorKameleon Tor Bridge using one of the encapsulation methods described
above. Finally (5), 6)), the TorKameleon Tor Bridge forwards the Tor traffic
until the final destination is reached.

The pre-Tor network of K proxies allows users to coordinate with K-1 other
users to deploy their own proxies while generating covert traffic, creating a larger
traffic pool that can mask individual users’ traffic and allow them to access
desired content while ”hiding” in the crowd.

Fig. 2. System model and workflow of the TorKameleon ecosystem. When using the
pluggable transport without proxies, the user connects directly to the TorKameleon
Tor bridge through the TorKameleon gateway.
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3.1 Threat Model

We assume a state-level adversary that can cooperate with organizations such
as ISPs and other governments. The main goal of the censor is to detect and
block TorKameleon usage without affecting legitimate WebRTC and TLS con-
nections. The censor can observe, collect, analyze, and interfere with all network
traffic originating from the user, TorKameleon proxies, TorKameleon bridges,
and the Tor network provided that all network segments accessed are under its
jurisdiction or that of the adversary parties involved.

However, we assume that the software installed on users’ devices and Tor-
Kameleon Tor bridges and proxies is not tampered with and that the censor
does not block or arbitrarily disrupt all WebRTC video conferences or TLS
communications due to the potential collateral damage it could cause, as these
protocols are widely used by organizations and services that strongly support
the regimes financially.

3.2 System Architecture

Fig. 3. System architecture of the TorKameleon pluggable transport.

In Figure 3 we can see how the system architecture of TorKameleon is built.
We focus mainly on the architecture of TorKameleon’s pluggable transport sys-
tem since it is the most difficult to understand, but we also explain how the
architecture of the TorKameleon proxy works at the end of the section. When a
client wants to use the TorKameleon pluggable transport service, it first starts
the TorKameleon gateway and the Tor daemon (the Tor software) on its local
machine. The Tor daemon connects to the TorKameleon gateway via a SOCKS5
proxy. Traffic can now be routed through the Tor daemon to the TorKameleon
gateway. This traffic can be any user traffic that is supported by Tor (the figure
uses the Chrome browser as an example, but it can also be any other user appli-
cation that can use the Tor daemon as a proxy). Tor traffic is now managed by
the controller, which is responsible for determining how traffic is encapsulated,
the size of packets to be encapsulated, and where traffic should be sent (in the
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figure, De/Encapsulation request). Once the traffic is encapsulated, it is sent
to the TorKameleon Tor bridge (on the right of the figure). The traffic is now
decapsulated depending on the type of encapsulation used, and the decapsulated
Tor traffic is sent to the Tor network via the Tor daemon running on the bridge
through a reverse proxy. The responses sent by the bridge follow the same flow
as described above.

When you use the TorKameleon proxies, the workflow is the same, with
a few differences. The traffic that goes through the TorKameleon gateway is
sent directly from the user application and not from the Tor daemon, so no
SOCKS5 connection is needed (a simple connection can be established from the
user application to the TorKameleon gateway). The TorKameleon gateway sends
traffic to other proxies via WebRTC encapsulation or TLS tunneling through a
network path configured by the controller. The last proxy in the path sends
traffic locally to the Tor daemon, which also runs on the proxy device, and the
workflow in Figure 3 is executed to send traffic to the Tor network.

3.3 Media Traffic Encapsulation

In this section, we turn our attention to the WebRTC encapsulation component
(in figure 3). A browser-based videoconferencing web application was developed
using the WebRTC technology stack to enable video conferencing between two
participants. The application was designed to encapsulate user traffic in We-
bRTC video frames, with the video serving as the carrier for the traffic.

We now explain how the WebRTC-based application is initialized and how
is the data encapsulation process.

WebRTC Initialization To launch the WebRTC-based web application, a
browser must be launched with the web application’s code. For this purpose,
when TorKameleon is launched, it automatically starts a local server that pro-
vides the web page with the scripts and files needed to run the web application.
In our system, we have two participant roles for the initialization process, the
initiator and the receiver of the connection, and both have different roles in es-
tablishing the connection. Therefore, we use two local servers, one that serves
the web application in receiver mode and one that serves the web application
in initiator mode. To automate browser functions and access the WebRTC web
application, the Selenium [31] framework was used. WebSockets were necessary
to connect the TorKameleon system to the WebRTC-based web application, as
regular socket connections are prohibited in browsers for security reasons. The
data received by the TorKameleon system is converted to a Base64 string and
sent to the web application via a WebSocket connection. The web application
encapsulates the data in video frames and sends the video stream to the other
remote peer (e.g., a TorKameleon Tor Bridge). The data received from the re-
mote peer is decapsulated and converted back into bytes from base64 and sent
to the TorKameleon system. Finally, a signaling process [32] ensures that the
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connection between peers is established and is mandatory for any WebRTC con-
nection. For this purpose, we have also designed a signaling process and a server
for communication establishment.

WebRTC Application Initialization Figure 4 shows the workflow of We-
bRTC encapsulation. First, we split the video stream to be transmitted into its
audio and video tracks so that the video track can be isolated and processed.
Next, we extract the video frames from the video track and use one of the de-
veloped data encoding mechanisms (see Section 3.4) to insert the data to be
encapsulated into the frames (this data is sent from the user application or Tor
to the TorKameleon system and transferred to the WebRTC application via
Websockets, as mentioned earlier). Finally, we combine the audio track with the
new video track containing the encapsulated data to create a new media stream.
This stream is then transmitted over the network to the other participant in the
video conference, which can be a TorKameleon Tor bridge, a proxy, or a user.
The traffic resulting from this process is no different from normal WebRTC traf-
fic to a censor or attacker. Thus, the covert content remains unobservable. It is
important to note that the read frames have already been encoded by the video
codec, and therefore there is no need to implement a robust method to protect
against lossy video codecs.

Fig. 4. Encapsulation of user traffic in WebRTC video frames workflow.

3.4 Data Encoding

With TLS encapsulation, no additional implementation effort is required other
than setting up the secure socket between the communication participants (i.e.,
an SSL tunnel). However, this is not the case with WebRTC data encapsulation.

Once the web application receives an array of bytes from TorKameleon with
a specific size of X bytes (user configurable and managed by the controller),
it stores the array and waits for a video frame to be transmitted so it can
encapsulate the data. This array of bytes is called a data block.

WebRTC encapsulation mode has two different modes for embedding data
blocks in frames: ADD (the data block is added to the end of the frame without
removing or replacing any content) and REPLACE (the content of the video
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frame is replaced with the data block to be encoded, leaving the frame header
untouched). A brief description of each mode follows.

The ADD mode integrates the entire data block into an ADD mode packet
without fragmentation, and the packet is attached to a single video frame. To
ensure that the packets are sorted at the receiver, the packet contains three
header fields: the packet sequence number, the length of the data block, and
a special code that indicates the beginning of the packet and that the frame
contains encapsulated data. The data is transmitted in the remaining part of the
packet. This mode allows for higher throughput but compromises unobservability
due to the increase in frame size.

The REPLACE mode is more complex than the ADD mode because it may
require fragmentation of the data block into smaller blocks based on the available
size of the video frame used for encapsulation. Due to the possible fragmenta-
tion of the data block and the required reassembly at the receiver side, it was
necessary to keep the fields used in the ADD packet and add additional new
fields. In particular, we included the following fields in the header: the LC flag
field, which indicates whether this packet contains the last chunk of a particular
data block (if the entire data block can be encapsulated in a single packet, or if
the chunk sent is the last of a particular data block, this field is used); and the
seg num field, which indicates the sequence number of the chunk so that they
can be reordered. Unlike the ADD mode, the REPLACE mode may have lower
throughput (depending on the frame size) because we don’t increase the frame
size. However, it provides better guarantees of unobservability, since the image
size remains unchanged.

4 Implementation

We developed the TorKameleon prototype using Java and JavaScript. The pro-
totype consists of two main components: the WebRTC-based web application
and the TorKameleon core system. It includes about 4,000 lines of code and
is publicly available on a GitHub repository for research purposes (https:
//github.com/AfonsoVi/TorKameleon). It can be used to study censorship cir-
cumvention techniques and possible extensions to the core solution by practi-
tioners and researchers alike. The TorKameleon system is dockerized and has
been developed and tested in Ubuntu 20.04.

We used JavaScript to develop the WebRTC-based web application. The
web application is served by a local nodeJS server that uses the EJS framework
(version 3.1.8) for HTML templating. We also used the WebRTC JavaScript
APIs [33] to develop the base of the web application and the Insertable Streams
API [34] to embed the covert data into the video frames. The signaling server
was also developed in nodeJS and is a simple backend server that accepts secure
WebSocket connections from the web application using the library Socket.IO
(version 4.0).

The TorKameleon system core was developed using Java 11 and uses the Se-
lenium framework (version 4.4.0 for Java) to programmatically launch the web

https://github.com/AfonsoVi/TorKameleon
https://github.com/AfonsoVi/TorKameleon
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application using the Chrome browser without a GUI to access local nodeJS
servers. For the Selenium framework to work correctly, a special browser driver
for Chrome must be used. The Chrome driver version 104.0.5112.79 was used,
and a WebSockets Java library [35] implementation was utilized for communi-
cation and data exchange between the web application and video frames.

5 Evaluation

Our experimental evaluation focused on two main goals: first, to determine the
resilience of the WebRTC encapsulation mechanism to active correlation attacks;
and second, to evaluate the performance impact of using such mechanisms com-
pared to normal Tor usage. In this chapter, we describe the experimental evalu-
ation results in terms of performance, resource utilization, and unobservability.

5.1 Setup

Our experimental setup consisted of four machines, three of which were virtual
private servers provided by the OVH service. These servers had the following
hardware specifications: an Intel 8-core processor running at 2.4 GHz CPU, 32
GB RAM, and 2 Gbps bandwidth. The fourth machine was a local machine
with an Intel i5-9300H CPU (4 cores at 2.4 GHz), and 16 GB RAM. All these
machines had Ubuntu 20.04 installed, which served as the operating system for
our tests.

The local machine acted as the user/client machine, while one of the VPS
servers acted as a TorKameleon Tor bridge deployed in the UK. The second
VPS server acted as a TURN /STUN server for the WebRTC connection and
was deployed in France. Finally, the last VPS server acted as an HTTP server
and was deployed in Canada. To reduce latency and reduce throughput variation
between experiments, we fixed the Tor network circuit relays (three relays) from
which we made observations. The middle relay was deployed in Germany, while
the exit relay was in the Netherlands.

5.2 Metrics and Methodology

In our evaluation, performance was measured using two parameters: Throughput
and Latency. Throughput was calculated by downloading a 250 KB file from the
HTTP server, while latency was measured using the httping tool to measure the
time it took to get the first byte of the response to an HTTP or HTTPS request
to the server. We compared our results with those of Tor vanilla (Tor without
our solution) to assess the performance impact of our system. To ensure the
accuracy of our measurements, we took five samples of download time for the
throughput measurement and ten samples of latency for each experiment. We
then calculated the average of these samples to determine the final throughput
or latency values. We repeated each experiment twice to ensure the consistency
and reliability of our results.
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The number of daily users of bridges is difficult to estimate because of their
nature. Many bridges appear to have a small number of users, while a small
number of bridges are used by most users. Based on monthly statistics [36], we
decided on a maximum of 50 parallel clients, although we expect TorKameleon
Tor Bridges to have fewer users in parallel.

We used TorMarker [9] for unobservability tests and measured FPR, TPR,
and accuracy. FPR evaluates the reliability of the model by indicating the per-
centage of regular data flows that are misidentified as watermarked streams,
while TPR measures the ability of the model to detect watermarks in traffic.
Accuracy evaluates the model’s precision in correctly classifying regular and
watermarked traffic.

5.3 Performance

To evaluate the performance of the system, we conducted tests using TorKa-
meleon as a pluggable transport.

Throughput Graph 5 shows the throughput of TorKameleon when used as a
pluggable transport with TLS encapsulation. As the graph shows, there is little
difference in throughput when different data block sizes are used.

Fig. 5. Throughput graphs for different modes of encapsulation and data block sizes.
Left: Throughput graph for TLS encapsulation; Right: Throughput graph for WebRTC
encapsulation. A-ADD mode; R-REPLACE MODE.

Graph 5 also illustrates the throughput of a client using WebRTC-based
encapsulation mode when 49 clients are added incrementally to download the
same file. Of the 49 clients, four use WebRTC-based encapsulation mode, while
the remaining 45 use TLS encapsulation mode. For every nine clients using
TLS tunneling, the tenth client uses WebRTC-based encapsulation mode. We
did this to avoid overloading the TorKameleon Tor bridge (see Section 5.4).
The graph depicts the throughput values for the ADD and REPLACE modes
for different data block sizes. Since TorKameleon is intended to be used and
deployed voluntarily by users, a maximum of 5 WebRTC encapsulation users in
a Tor bridge seems plausible.
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The results we obtain for TLS encapsulation are similar to those obtained
with Tor vanilla (5128 Kbps). The results for WebRTC encapsulation, for both
ADD and REPLACE, show reasonable and expected reductions that do not
make TorKameleon unusable for low-throughput Internet tasks (especially at
higher data block sizes), compared to Tor vanilla.

Latency The graph 6 shows the latency of TLS encapsulation, WebRTC-based
encapsulation in ADD mode, and WebRTC-based encapsulation in REPLACE
mode, respectively, for the different data block sizes tested. It is worth noting
that all encapsulation modes show similar latency values for the different data
block sizes.

Fig. 6. Latency graphs for different modes of encapsulation and data block sizes. Left:
Latency graph for TLS encapsulation; Right: Latency graph for WebRTC encapsula-
tion. A-ADD mode; R-REPLACE MODE.

Our latency results with TLS encapsulation were comparable to those of Tor
vanilla (with a measured latency of 398.2 ms for the Tor vanilla baseline). Addi-
tionally, the latency values for WebRTC encapsulation were reasonably and pre-
dictably higher than those of Tor Vanilla, in both ADD and REPLACE modes.
Nonetheless, these latency increases did not render TorKameleon unusable with
either encapsulation mode compared to Tor vanilla.

5.4 Resource Utilization

Relevant metrics, including CPU and RAM usage percentage, can be retrieved
using the Linux top command. Table 1 shows the CPU usage of the Chrome
browser (running the WebRTC web application) and the TorKameleon Java
core for the TorKameleon client-side pluggable transport and the TorKameleon
server-side pluggable transport on the TorKameleon Tor Bridge. Our analysis
shows that the Chrome browser requires about 40% of a CPU core, while the
TorKameleon Java core requires only about 1% for a WebRTC connection. The
primary conclusion from the data is that the WebRTC-based web application
imposes a higher CPU workload compared to other components of TorKameleon.
We can also conclude that a bridge with multiple WebRTC-based encapsulation
clients must have high CPU processing power to avoid throttling.
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Java Core
(Client)

Java Core
(Server)

Google Chrome
(Client)

Google Chrome
(Server)

CPU Usage
(%)

1 0.3 42.6 40.2

Memory Usage
(%)

2.1 0.9 1 0.5

Share Memory Size
(Kb)

28923 29148 100444 1062245

Physical RAM Usage
(Kb)

339088 276604 167404 169976

Table 1. Resource usage table for TorKameleon pluggable transport on the client side
(client) and the server side (server).

5.5 Unobservability

To test for unobservability, we used TorMarker [9], a tool that allows small delays
to be inserted into traffic to create an observable watermark in another segment
of the network. To detect watermarked traffic in the network, TorMarker uses
models based on deep learning.

TorMarker was trained with data sets of 60,000 packets, the same size used
in its experimental evaluation. An amplitude of 120 ms (the delays induced)
was chosen for the ingress flows because it provided the best results in terms of
accuracy, FPR, and TPR among the tested amplitudes. We also used flow sizes
of 150 packets for the same reasons as described above.

To train TorMarker, we first forwarded 30,000 packets to the HTTP server
and sent them through the TorKameleon Tor bridge using TorKameleon as a
pluggable transport with the WebRTC encapsulation mechanism. These 30,000
packets are referred to as regular traffic. Next, we forwarded the same 30,000
packets and embedded the watermarks into them, resulting in 30,000 water-
marked packets. Both the regular traffic and the watermarked traffic, consisting
of 30,000 packets each, were collected and used to train the TorMarker detection
component.

Two main conclusions can be drawn from the graph 7. First, the size of the
data blocks affects the unobservability of TorKameleon, with unobservability
being greater for smaller data blocks; smaller blocks increase FPR and decrease
TPR rate and accuracy. Second, discrepancies between REPLACE and ADD
modes also increase with block size, with REPLACE mode being more resistant
to watermarking attacks.

We claim that TorKameleon is unobservable for values of 536 and 1050 bytes
for the ADD and REPLACE modes, based on our FPR and accuracy thresh-
olds (false positive rate (FPR) not less than or equal to 10%, and accuracy
value not greater than or equal to 85%). These thresholds were derived from
the results of the experimental evaluation of TorMarker [9], deepcorr [8], and
DeepCoFFEA [7], and we argue that they represent the minimum values re-
quired to classify a model as reliable, accurate, and precise. We also propose
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Fig. 7. Unboservability graphs for ADD and REPLACE MODE with different data
block sizes. Left graph: accuracy rate graph; middle graph: TPR graph; right graph:
FPR graph.

that TorKameleon can be considered unobservable for data blocks of 2078 bytes
in REPLACE mode since blocking TorKameleon traffic with a data block size of
2078 bytes would cause significant collateral damage to regular WebRTC traffic,
although the results are closer to our thresholds.

6 Conclusion

We have developed TorKameleon, an Internet censorship evasion tool that uses
K-anonymization and encapsulation mechanisms for WebRTC and TLS traffic
and can resist modern correlation attacks. We have also conducted an extensive
performance and resource consumption evaluation and unobservability testing
to measure TorKameleon’s performance and resilience against active correlation
attacks. As far as we know, TorKameleon is the first tool to integrate these two
mechanisms.

TorKameleon provides a state-of-the-art, fully integrated, Tor pluggable trans-
port with WebRTC-based covert channels that can withstand active correlation
attacks. Current WebRTC-based encapsulation systems do not have Tor integra-
tion and have not been tested against active correlation attacks. We also enable
the creation of a pre-Tor network consisting of K-proxies from which user traffic
can be routed. This represents two main ideas that have not been combined
before.

In the future, we plan to further analyze the code to identify potential opti-
mization areas, as well as investigate different browser options for the prototype
web application. We also plan to expand our experimental evaluation to include
additional performance and unobservability tests to gain a more comprehensive
understanding of the tool’s functionality and its ability to withstand correlation
attacks and traffic analysis.
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Appendix

7 Related Work - Table

Fig. 8. Comparison between TorKameleon and other relevant systems presented in
related work, in terms of features. *Snowflake allows traffic encapsulation in WebRTC
data channels, but not in media channels.
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