
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/364193596

Threat Detection and Mitigation with Honeypots: A Modular Approach for IoT

Chapter · October 2022

DOI: 10.1007/978-3-031-17926-6_5

CITATIONS

0
READS

49

4 authors, including:

Some of the authors of this publication are also working on these related projects:

H2020 CyberSec4Europe View project

OFELIA View project

Patricia Sousa

University of Porto

15 PUBLICATIONS   40 CITATIONS   

SEE PROFILE

João Resende

Universidade NOVA de Lisboa

19 PUBLICATIONS   35 CITATIONS   

SEE PROFILE

Luís Antunes

University of Porto

119 PUBLICATIONS   1,184 CITATIONS   

SEE PROFILE

All content following this page was uploaded by João Resende on 10 October 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/364193596_Threat_Detection_and_Mitigation_with_Honeypots_A_Modular_Approach_for_IoT?enrichId=rgreq-ffed495acda2e542b8be8fee75aae64f-XXX&enrichSource=Y292ZXJQYWdlOzM2NDE5MzU5NjtBUzoxMTQzMTI4MTA4ODk2MzAyNkAxNjY1NDAzNTUwNzY4&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/364193596_Threat_Detection_and_Mitigation_with_Honeypots_A_Modular_Approach_for_IoT?enrichId=rgreq-ffed495acda2e542b8be8fee75aae64f-XXX&enrichSource=Y292ZXJQYWdlOzM2NDE5MzU5NjtBUzoxMTQzMTI4MTA4ODk2MzAyNkAxNjY1NDAzNTUwNzY4&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/H2020-CyberSec4Europe?enrichId=rgreq-ffed495acda2e542b8be8fee75aae64f-XXX&enrichSource=Y292ZXJQYWdlOzM2NDE5MzU5NjtBUzoxMTQzMTI4MTA4ODk2MzAyNkAxNjY1NDAzNTUwNzY4&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/OFELIA?enrichId=rgreq-ffed495acda2e542b8be8fee75aae64f-XXX&enrichSource=Y292ZXJQYWdlOzM2NDE5MzU5NjtBUzoxMTQzMTI4MTA4ODk2MzAyNkAxNjY1NDAzNTUwNzY4&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ffed495acda2e542b8be8fee75aae64f-XXX&enrichSource=Y292ZXJQYWdlOzM2NDE5MzU5NjtBUzoxMTQzMTI4MTA4ODk2MzAyNkAxNjY1NDAzNTUwNzY4&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Patricia-Sousa-3?enrichId=rgreq-ffed495acda2e542b8be8fee75aae64f-XXX&enrichSource=Y292ZXJQYWdlOzM2NDE5MzU5NjtBUzoxMTQzMTI4MTA4ODk2MzAyNkAxNjY1NDAzNTUwNzY4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Patricia-Sousa-3?enrichId=rgreq-ffed495acda2e542b8be8fee75aae64f-XXX&enrichSource=Y292ZXJQYWdlOzM2NDE5MzU5NjtBUzoxMTQzMTI4MTA4ODk2MzAyNkAxNjY1NDAzNTUwNzY4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Porto?enrichId=rgreq-ffed495acda2e542b8be8fee75aae64f-XXX&enrichSource=Y292ZXJQYWdlOzM2NDE5MzU5NjtBUzoxMTQzMTI4MTA4ODk2MzAyNkAxNjY1NDAzNTUwNzY4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Patricia-Sousa-3?enrichId=rgreq-ffed495acda2e542b8be8fee75aae64f-XXX&enrichSource=Y292ZXJQYWdlOzM2NDE5MzU5NjtBUzoxMTQzMTI4MTA4ODk2MzAyNkAxNjY1NDAzNTUwNzY4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joao-Resende-7?enrichId=rgreq-ffed495acda2e542b8be8fee75aae64f-XXX&enrichSource=Y292ZXJQYWdlOzM2NDE5MzU5NjtBUzoxMTQzMTI4MTA4ODk2MzAyNkAxNjY1NDAzNTUwNzY4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joao-Resende-7?enrichId=rgreq-ffed495acda2e542b8be8fee75aae64f-XXX&enrichSource=Y292ZXJQYWdlOzM2NDE5MzU5NjtBUzoxMTQzMTI4MTA4ODk2MzAyNkAxNjY1NDAzNTUwNzY4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade-NOVA-de-Lisboa?enrichId=rgreq-ffed495acda2e542b8be8fee75aae64f-XXX&enrichSource=Y292ZXJQYWdlOzM2NDE5MzU5NjtBUzoxMTQzMTI4MTA4ODk2MzAyNkAxNjY1NDAzNTUwNzY4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joao-Resende-7?enrichId=rgreq-ffed495acda2e542b8be8fee75aae64f-XXX&enrichSource=Y292ZXJQYWdlOzM2NDE5MzU5NjtBUzoxMTQzMTI4MTA4ODk2MzAyNkAxNjY1NDAzNTUwNzY4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis-Antunes-9?enrichId=rgreq-ffed495acda2e542b8be8fee75aae64f-XXX&enrichSource=Y292ZXJQYWdlOzM2NDE5MzU5NjtBUzoxMTQzMTI4MTA4ODk2MzAyNkAxNjY1NDAzNTUwNzY4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis-Antunes-9?enrichId=rgreq-ffed495acda2e542b8be8fee75aae64f-XXX&enrichSource=Y292ZXJQYWdlOzM2NDE5MzU5NjtBUzoxMTQzMTI4MTA4ODk2MzAyNkAxNjY1NDAzNTUwNzY4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Porto?enrichId=rgreq-ffed495acda2e542b8be8fee75aae64f-XXX&enrichSource=Y292ZXJQYWdlOzM2NDE5MzU5NjtBUzoxMTQzMTI4MTA4ODk2MzAyNkAxNjY1NDAzNTUwNzY4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis-Antunes-9?enrichId=rgreq-ffed495acda2e542b8be8fee75aae64f-XXX&enrichSource=Y292ZXJQYWdlOzM2NDE5MzU5NjtBUzoxMTQzMTI4MTA4ODk2MzAyNkAxNjY1NDAzNTUwNzY4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joao-Resende-7?enrichId=rgreq-ffed495acda2e542b8be8fee75aae64f-XXX&enrichSource=Y292ZXJQYWdlOzM2NDE5MzU5NjtBUzoxMTQzMTI4MTA4ODk2MzAyNkAxNjY1NDAzNTUwNzY4&el=1_x_10&_esc=publicationCoverPdf


Threat Detection and Mitigation with
Honeypots: A Modular Approach for IoT

Simão Silva1[0000−0002−7692−5822], Patŕıcia R. Sousa1,2[0000−0002−0268−9134],
João Resende1,2[0000−0003−0125−4240], and Lúıs Antunes2[0000−0002−9988−594X]

1 CRACS - INESCTEC
2 University of Porto

simao.sfos@gmail.com, {psousa,jresende,lfa}@dcc.fc.up.pt

Abstract. A honeypot is a controlled and secure environment to exam-
ine different threats and understand attack patterns. Due to the highly
dynamic environments, the growing adoption and use of Internet of
Things (IoT) devices make configuring honeypots complex. One of the
current literature challenges is the need for a honeypot not to be de-
tected by attackers, namely due to the delays that are required to make
requests to external and remote servers. This work focuses on deploying
honeypots virtually on IoT devices. With this technology, we can use
endpoints to send specific honeypots on recent known vulnerabilities on
IoT devices to find and notify attacks within the network, as much of this
information is verified and made freely available by government entities.
Unlike other approaches, the idea is not to have a fixed honeypot but a
set of devices that can be used at any time as a honeypot (adapted to
the latest threat) to test the network for a possible problem and then
report to Threat Sharing Platform (TSP).

Keywords: CVE · Honeypot · Internet of Things · Intrusion Detection
· Security · Vulnerability.

1 Introduction

The evolution of technology is changing society and the environment around
us. With users spending more time looking at a screen than sleeping [10], it
is important to alert users to the hardships they may face online regarding
security and privacy. As the software is not unbreakable and new vulnerabilities
are identified and disclosed daily, devices and data can be compromised. New
vulnerabilities are threats that an attacker can use to take advantage of the user,
creating severe consequences.

The growing number of cyberattacks and their extensive damage has changed
the mindset of organizations, with more resources being applied to cybersecu-
rity. According to statistics from AV-TEST as of January 2021 [3], the security
community knew over a billion malicious executable scripts. Digital transfor-
mation has also meant increased cybercrime, often associated with significant
financial losses for individuals and organizations. As new daily vulnerabilities



2 Simão Silva et al.

are identified and disclosed, attackers constantly find new ways to compromise
devices. However, the increase in the number of cyberattacks and their extensive
damage has changed organizations’ mindset, applying more resources, specific
teams, and dedicated tools to deal with this problem.

The use of honeypots has been a vital tool to face the increase in cyberat-
tacks. A honeypot is configured to detect, circumvent, or prevent unauthorized
use of information systems. A honeypot is a controlled and secure environment
to examine different threats and understand attack patterns. It is possible to an-
alyze attack traffic independently of regular network traffic and away from crit-
ical infrastructure. Thus, security teams can focus on analyzing just the threat.
Honeypots are versatile and are not addressed exclusively to a specific prob-
lem like other standard solutions (firewalls and antivirus). Given its functioning,
it becomes an essential information tool to spot existing threats and possibly
new ones, which makes them an important asset, especially relevant for Secu-
rity Operations Center (SOC) teams since they possess a significant database
of attacks’ artifacts and, consequently, a significant source of threat intelligence.
Honeypot systems are becoming a mandatory component for cybersecurity de-
fense by working with threat intelligence platforms.

Although many honeypots are aimed at different purposes, these systems
have some constraints. Given the diversity of devices, there are still limitations in
using these systems outside of x86 architectures, leaving out capable devices such
as Raspberry Pi, which align computational power with low energy consumption.
Another issue is regarding its use. With the proliferation of the cloud, we are
witnessing the phenomenon of services migration to external servers, which, in
the case of honeypots, the trend is to use remote machines as baits, and often, the
traffic is redirected from the local to the cloud network. In this case, resorting
to this method allows the attacker to quickly detect that it is in a honeypot
by measuring the latency times of Internet Control Message Protocol (ICMP)
ECHO requests, thus making the honeypot ineffective.

This paper contributes to the existing literature with the creation of an auto-
matic honeypot instance deployment when a vulnerability is present in a device
in the network, capable of running a variety of devices, including low-power,
performance-constraint devices, and provide a mechanism that can discretely
monitor honeypots instances to collect intelligence of tactics and techniques of
intruders. Also, overall, we contribute with an autonomous threat detection flow
able to analyze the diversity of devices in the network and detect and mitigate,
if possible, its vulnerabilities.

2 Related work

In IoT-based networks, new devices entering the network are automatically con-
figured due to their open nature, which leaves these networks subject to many
attacks, as described in [18]. Given these systems’ complexity and configurations,
a common approach is to use low-interaction honeypots as they are easier to in-
stall and configure and with low risk. Dshield [1], Glastopf [26] and OpenCanary



Threat Detection with Honeypots for IoT 3

[4] can monitor requests and alert of potential unwanted traffic but, due to its
characteristics, has limitations on the information gather from attackers which
unable the trace of attacks. Also, the attackers can easily identify them due to
their appearance and behavior [11,20].

Honeyd [21] is a simulated honeypot environment intended to simulate the
virtual network topology to filter network packets based on user preferences.
When sending a response packet, the personality engine makes it match the
network behavior of the configured operating system personality [22]. As it can
emulate operating systems, Honeyd can appear to the attacker as a router, web
server, or DNS server, allowing the honeypot to blend into existing networks.
With this behavior, Honeyd can spoof responses about active fingerprint mea-
surements, such as those used by the NMAP tool.

The increasing need for honeypots has led to the concept of Honeypot-as-a-
Service (HaaS), where, instead of being configured locally, they are made avail-
able to users by cloud providers, thus eliminating the need to worry about hard-
ware, software, and human resources to create and maintain the honeypot. There
are public cloud provider honeypots [16] that, although it reduces costs, still
require labor to apply and maintain the configurations. An evaluation of this
solution [14] shows that it still involves human resources to use and maintain
the settings, and the traffic flow is in order.

Honeyd’s low-interaction honeypots [6] explore the idea of honeypots that
adapt to the needs and changes of organizations and use unassigned IP addresses
to launch instances. With traffic being diverted in the background from one
honeypot to another, Honeyd honeypots are more reliable for intruders. However,
this requires configuring physical machines dedicated exclusively to the honeypot
network, and as we would need to mimic more rogue systems, more IP addresses
also need to be available.

Regarding the industrial sector, there is also a concern about safety, namely
for Programmable Logic Controllers (PLCs). HoneyPLC [19] overcomes the lim-
itations of current honeypot implementations for PLCs, with easy fingerprinting
and low interaction levels being some examples. However, the system remains
stagnant and unable to adapt to new changes in existent threats.

A comprehensive solution for honeypot systems focused on IoT environments
is the YAKSHA [17] project, which consists of the development of a cloud-
based platform that allows an organization to perform continuous monitoring
and penetration tests of its infrastructure without the need of need to maintain
such infrastructure nor have dedicated staff. It provides a way to create cus-
tom honeypots tailored to specific needs that include installing a specific set of
services that will be used to lure attackers. Although it is designed for the IoT
environment, the honeypot deployment, like the malware analysis tool, requires
additional hardware based on the x86 architecture. Also, while a mechanism
for patching and configuring IDS is mentioned in vulnerability detection, it is
unclear how this process is accomplished.



4 Simão Silva et al.

Table 1 shows the comparison of characteristics of current state-of-the-art
against our proposed solution (Sandboxing for Threat Detection and Mitigation
(STDM)).

[1] [26] [4] [21] [16] [14] [19] [17] STDM

Honeypot deployment X X X X X X X X X

Device profiling X X X X X

Honeypot customization X X X X X X

Decentralized deployment
supported

X X X X

CVE vulnerability scanning X

IDS connection X X

TSP connection X

ARM compatibility X X X X

Table 1. State of the art’s features summary

All these solutions lack the characteristics of environmental independence
and mobility. The presented honeypots cannot be deployed on any device, at
any time, regardless of its architecture. Given the highly dynamic environments
associated with IoT, honeypots must also be interchangeable between available
devices on the network, as well as the ability to be easily replicated across dif-
ferent devices.

3 Architecture

Gathering threat knowledge is one of the most important and necessary tasks
in today’s cybersecurity. The increase in attacks led to changes in collecting
knowledge of (potential) threats and how to take advantage of that knowledge.

Figure 1 shows the overview of the architecture of our system. The Threat
Sharing Platform (TSP) component will update their database with the Common
Vulnerabilities and Exposures (CVE) entries (1). The STDM Central Coordina-
tor will act as a go-between managing the device scanning history and honeypots.
From time to time, the devices will send their list of software installed to the
STDM Central Coordinator that, in turn, requests the information about CVEs
from the TSP (2). For each CVE entry, the coordinator parses the Common
Platform Enumeration (CPE) list - a standard that specifies a structured nam-
ing scheme for software based on the uniform resource identifiers syntax - and
searches for a match in the list received from the devices (3-4). When a match is
found, the STDM Central Coordinator will select a random device and launch a
honeypot with the same operating system and software version of the match (5).
Inside the honeypot, an admin user can verify if the match is not a false positive
and provide that information to the STDM Central Coordinator (6). From the
honeypot logs (7), an administrator user can observe the malicious requests and



Threat Detection with Honeypots for IoT 5

can create, if possible, rules to be applied to the Host-based Intrusion Detection
System (HIDS) of all devices (8).

Fig. 1. System architecture

In the following subsections, we will describe the highlighted components of
our architecture.

3.1 Threat Sharing Platform

This component is responsible to store information from Indicators of Compro-
mise (IoC) and CVE. From time to time, the platform will retrieve IoC from
public and trustworthy feeds and act as a local mirror database of National In-
stitute of Standards and Technology (NIST)’s National Vulnerability Database
(NVD) database of CVE entries.

Even in security breaches, we can still learn with the shreds of evidence left
by the intruder. IoC [9] enhances the honeypot by capturing malicious activi-
ties on the network at their initial stage, preventing them from becoming more
significant problems and compromising the security of the infrastructures.

Also, in our approach, we intend to enrich our knowledge through known
public vulnerabilities, namely CVEs [12]. As they are public, we can recreate
the environments that mimic that CVE and use it to gather IoC that can be
later used to enhance our HIDS, as shown in steps 5, 7, and 8 of Figure 1.



6 Simão Silva et al.

Those environments are launched as honeypots and are exposed to the Internet
as decoy services.

3.2 Host Intrusion Detection System

We use the component of HIDS to detect and automate the honeypot initializa-
tion process according to what is happening in the network (environment).

To improve security on our devices, we have deployed two HIDS systems
- one that offers anomaly and signature variants and one that offers Intrusion
Prevention System (IPS) capabilities - on each device, as these systems are
designed to increase protection against internal and external threats. In addition,
they can monitor network traffic to and from the machine, observe running
processes, and inspect system logs for patterns that match known cyberattacks.
While they can be seen as limited due to their low visibility (limited to the
host, which decreases the decision-making context), their deep visibility into the
internals of the host allows the security teams to analyze activities in a high level
of detail. Thus, unlike network-based intrusion detection systems [15], they can
directly access and monitor data files and processes of the targeted system.

3.3 STDM Central Coordinator

This component is the gateway between the threat-sharing platform and the
devices in the network. It is responsible for checking if a device in our network
has vulnerable software, keeping records of those threats, and launching the
honeypots containing them.

3.4 Watchdog

Watchdog is an agent installed on the host system to allow users to access any
honeypot file without having to directly interact with it or learn the back-end
command syntax to access it. From Watchdog, a user can monitor the logs of
the vulnerable service running on the honeypot instance. With this information,
it can analyze logs and analyze malicious queries that can later be manually
added to the IoC database in TSP, which allows the platform to be aware of
insider attacks viewed or received by honeypots, allowing to prioritize threats in
a global overview.

The Watchdog can be adapted to any installation of service in the virtual
machine.

3.5 Honeypot

The honeypot instances are virtual machines with service(s) exposed to the In-
ternet. Those services are installed directly on the file system or using containers
(to avoid external changes that can interfere with the service availability and ex-
pected behavior). The vulnerable services are represented by the CVE container



Threat Detection with Honeypots for IoT 7

inside the Sandboxing Virtual Machine in the Honeypot (in the Figure 1). The
instances are prepared to run in x86-64 and ARM architectures, thus enabling
(virtually) the launching of an instance on any device on the network. Also, this
mobility enables a given instance running a given service can be easily shifted
between devices.

These instances require isolation techniques so that the attacker can not
gain access to the host system and damage it. The typical strategy used in the
cybersecurity world is sandboxing, which is a security mechanism that tricks an
application or program into thinking it is running on a regular computer [5].
It allows us to provide services to intruders in a tightly controlled environment
without allowing the services and the intruders’ actions to harm the host device.

4 Implementation

Following the presentation of our architecture and its components in Section 3,
this chapter describes the technical details of the implementation of our system,
the decisions made, and problems that emerged during said implementation.

4.1 Threat Sharing Platform

For our architecture, we opt to use Malware Information Sharing Platform
(MISP) as our threat (intelligence) sharing platform [27]. Interactions with MISP
can be done by its Representational State Transfer (REST) interface. Using
PyMISP [23], we can manage the platform and add new functionalities. In our
case, we use it to keep our database of IoC and CVEs updated.

Regarding CVEs, we keep our database updated by a custom module-like
script we developed, henceforth referred to as CVE module. That module will
use NIST’s REST service to periodically request new or recent modified entries
from the CVE database since the last request. The service will answer with an
empty response - meaning that we are up to date - or a list of entries with their
respective details in JavaScript Object Notation (JSON) format.

For each element in that list, we must verify the contents of the input field.
If the field is empty, the CVE is under analysis, and the information about this
vulnerability is still preliminary. If not, we make a subsequent request to retrieve
the CPE software list affected by the vulnerability. Using the information from
both requests, namely ID, description, reference links, and CPE list, we use the
CVE module to create a MISP event with all these attributes and store it on
the platform, making it available to the other components of our system.

4.2 STDM

This component is the bridge between the network devices and the TSP. The
component comprises a server with a database storing the values of the device’s
last authentication timestamp (for debugging) and several vulnerabilities found
(for statistical purposes). All communications between devices and our server use



8 Simão Silva et al.

SSL/TLS to provide confidentially and integrity. The devices will authenticate
themselves into the component using a certificate-based authentication where
each device has its own issued certificate that was later manually installed. This
method allowed us easier management of the devices, given that only devices with
a valid certificate installed can access our system. Then, they will periodically
send the names and versions of the software installed on the host to the server.
In turn, the server will request the TSP platform for the list of CVEs and
respective CPEs and verify if there is a match against the information received
from the device. If a match is found, it increments the positive matches statistics,
launches a honeypot instance with the same operating system, and informs the
admin of the vulnerable software version to install it on the honeypot later. The
honeypot instance starts on a random device with the necessary resources to run
the instance and is available in the network at the launch time.

The software matching is not linear and requires a pre-processing step. Given
that the names in NVD’s database are in CPE syntax and differ from the syntax
used by operating systems, we attempt to translate the CPE syntax closer to the
names on the operating systems. However, we notice a high rate of false positives
in some situations, which we attribute to the versioning naming format. In these
cases, a warning is displayed to an admin user that has to check if it is a match
manually.

4.3 Host Intrusion Detection System

For our solution, we opt to use a combined solution of HIDS by leveraging
the Fail2ban’s IPS characteristics. As HIDS are passive in its essence, meaning
they identify but do not prevent suspicious activity, we chose to add an IPS
system as they are active in preventing those suspicious activities. Thus, to
take advantage of all of their features, we used OSSEC (HIDS) combined with
Fail2ban (HIDS/IPS).

4.4 Isolated environments

Honeypot’s security creates a vulnerability in the host that is deliberately singled
out for attackers to use. In addition, deploying these systems in secure environ-
ments is necessary so that activities on honeypot systems do not affect the host.
This section describes the technologies and methods applied to achieve this goal
with that goal in mind.

Virtualization was used because the kernel and libraries are not shared be-
tween host and guest to prevent an attacker from accessing the host machine.
From the functionality point of view, it allows the creation of several isolated en-
vironments from single hardware, thus allowing better usage of resources. While
containers are highly supported for our architectures (x86 and ARM), the isola-
tion provided by virtual machines was the critical factor to consider.

Virtualization technology has many solutions for x86 architectures, but the
same does not apply to devices with ARM architectures. However, continuous
improvements in boards, such as the Raspberry Pi, have made it feasible to use



Threat Detection with Honeypots for IoT 9

Kernel-based Virtual Machine (KVM), a Linux kernel module that allows the
Linux kernel to act as a hypervisor, which has become more accessible for users
with Linux distributions with the pre-compiled Linux KVM kernel module.

The chosen virtual machine provider was Multipass [8] due to the support of
different architectures and operating systems, allowing it to scale its use to any
system. However, to manage virtualization, we had to change Multipass settings.
By default, it uses the QEMU hypervisor [7] that, although it runs perfectly on
x86-based processors, presented some incompatibility issues when running on
ARM processors, making Multipass unable to run. So, we change the hypervisor
to LXD [2], which is a REST API that connects to libxlc, which is the Linux
Containers (LXC) library - a solution for virtualizing software at the operating
system level within the Linux kernel [24] that can monitor the virtual machines
from the host’s filesystem.

The honeypot system is a Multipass virtual machine deployed by the STDM
Central Coordinator component. Currently, only Ubuntu cloud images can be
deployed automatically. However, the usage of custom images is also supported.

The system’s image is very similar to a non-graphical version of Ubuntu
Server, with no visible distinguishability that can hint to the intruder that it
is a decoy. Once up and running, an admin user sets up the vulnerable service,
including the additional required software and the necessary port-forwarding
with IPtables. The services are installed preferably from the source code of the
corresponding vulnerable version and, when possible, deployed on containers to
take advantage of its portability so that installation is environment independent
and the service easily deployed (it can start in just a few seconds) with minimal
overhead.

4.5 Watchdog

We have two ways to access the honeypot: the Multipass interface or the LXC/LXD
interface. Both options allow us to access the honeypot and monitor the services’
logs, but they can reveal to the attacker that he/she is in a decoy system. Using
the Multipass interface, an attacker can monitor the SSH log file and discover a
user with Sudo privileges monitoring the log files, which can be an admin user
and thus jeopardize the decoy system. Instead, if the LXC/LXD interface is used,
the attacker can be suspicious of the system if it discovers that the lxd-agent is
running (given this is necessary for the host-honeypot communication) or if a
process monitoring some log file own by the root is running. The resolution of
these issues was two: the first one is mounting the /proc directory with hide-
pid=2 flag, thus denying users access to processes besides theirs; the second one
is by unmounting and mounting the system image file (.img) used to support
the virtual machine on the host’s file system. This second option comes with the
inconvenience of repeating the unmount/mount routine due to a limitation on
the image file that supports the virtual machine file system. When mounted, we
notice that later changes made within the virtual machine’s file system are not
reflected in the mount point and vice versa. However, we can see earlier changes
if we repeat the unmount/mount routine on the image file. This limitation forces



10 Simão Silva et al.

us to redo the unmount/mount routine to get new data from the log files, making
real-time log monitoring impossible.

Given the options above, we opt to use the LXC/LXD interface. Even though
the flag usage can indicate the presence of a decoy system, it can also be seen as
a default security measure employed by an admin. Also, considering the usabil-
ity trade-off between the two resolutions, the usage of the LXC/LXD interface
provides a better user interaction.

To avoid the need for admin users to learn and remember the syntax of
the command to access the instance, we developed a script that abstracts the
backend command and accepts user input to execute commands as if the users
were inside the instance.

5 Evaluation

In this section, we aim to evaluate the performance of our system. Our evaluation
focuses on the measurement of delay between the time attack is detected (i.e.,
the malicious request is detected) on the honeypot and the time the central
coordinator receives that information.

The goal of our evaluation is to demonstrate the feasibility of the solution.
For the performance evaluation, the main challenge was to measure and compare
with a standard service in the literature. An example of this service type is
Apache2 [13], which is one of the most used web servers. We use a vulnerability of
this service to demonstrate our prototype (CVE-2019-10092) using the Apache
HTTPd 2.4.38 server (this issue affects the versions from 2.4.7 up to 2.4.51,
included).

5.1 Environment description

For our scenario, we used a Raspberry Pi 4 Model B with 4GB of RAM with a
Broadcom BCM2711 1.5 GHz Quad-Core 64-bits processor connected through
an Ethernet cable to our router Thomson TG784n. Also, we acquired a virtual
machine from Microsoft Azure with 2 GB of RAM and an Intel Xeon E5-2673
v3 2.40 GHz processor truncated at two cores. Both used Ubuntu 20.04 LTS as
the operating system.

5.2 Methodology

We designed our testing scenarios to consider different honeypot installations.
We tested our system in the following scenarios: Setup 1 (HaaS with physical ma-
chines): cloud virtual machine exclusively dedicated to being a honeypot; Setup
2 (HaaS with virtual machines and using LXD): using Multipass instances as
honeypots on the cloud virtual machine to evaluate the impact of virtualization
overhead; and Setup 3 (STDM ): our solution runs in a local network with a
Raspberry Pi running Multipass instances as honeypots.



Threat Detection with Honeypots for IoT 11

The tests were performed to explore the differences against the HaaS concept
and usage of cloud machines to compare the delay times between on-premise
and off-premise solutions (State-of-the-Art). Given the usage of virtualization,
we also tested its impact on the overall results. Scenarios from Setup 1 and Setup
2 allow us to test and compare the State-of-the-Art solutions with our solution
(Setup 3).

Regarding deployment, we launch the vulnerable Apache Server from a con-
tainer available on a Docker Registry to simplify the installation process in all
setups. For setups 1 and 2, to allow queries from cloud machines to reach the
central coordinator, we had to configure IPTables rules and delete the default
Azure forwarding rules causing the requests to be dropped. For setups 2 and
3, we deployed a Multipass virtual machine, installed the Docker software, and
configured the necessary redirects from the host to the virtual machine to reach
the server from the outside.

The attack scenario was performed on a client-server basis running an envi-
ronment to mimic the CVE-2019-10092 in the Apache HTTPd 2.4.38 server.

We measure the delay times between the moment the malicious request is
detected and when the information is recognized by the STDM Central Coordina-
tor. For this, a specific tool was designed, located precisely in the STDM Central
Coordinator, which provides the network latency generated (in milliseconds) by
our solution. The exploitation was performed using a bash script containing a
cURL request to the server’s IP address.

5.3 Results

This section aims to show the results and comparison with state-of-the-art.
Table 2 presents the results for each of the three scenarios of network through-

put. For gathering the network information, we used iPerf [25], which is software
used to test the network bandwidth. We collected two-time samples to measure
the setup performance only in network bandwidth. The results presented in the
table are the mean and standard deviation for the three setups and both mea-
surements (TCP bandwidth and UDP jitter).

Setup 1 Setup 2 Setup 3

TCP bandwidth
(Mbits/sec ± sd)

1,22 ± 0,89 1,17 ± 1,06 30,29 ± 2,91

UDP jitter
(ms ± sd)

4,02 ± 1,12 4,32 ± 2,88 0 ± 0

Table 2. Latency results for the three setups

Figure 2 represents the delay associated with each implementation scenario.
The latency of the process between detecting the malicious request in the honey-
pot instance and the moment when the STDM Central Coordinator receives this
information. To do this, we collect three samples for each number of requests.



12 Simão Silva et al.

Fig. 2. latency (ms) per number of requests

The results of Setup 1 (HaaS with physical machines) show a delay in the
order of 390ms with minimal oscillations. Then, Setup 2 (HaaS with virtual
machines and using LXD) presents small delay increments compared to Setup
1, showing that virtual machines have a residual overhead on performance and
is, therefore, a good choice when looking for multiple deployments and host
isolation. On the other hand, Setup 3 (STDM - our implementation) shows
the main advantage of having Honeypots on the network endpoints because
the delay associated with this task is reduced to close to 0 with on-premises
honeypots. Similar behavior could be achieved with Honeypots running on a
separate Local Area Network (LAN), but these solutions raise concerns about
the actual usability of the honeypot network (as shown in related works).

6 Conclusion

In this work, we studied and created a solution to autonomously detect and
prevent threats based on public information of known treats and specialized
software that gathers, parses, and analyzes information.

We offer a new security approach to deploying dynamic local honeypots ca-
pable of running on devices not previously used for this purpose. As far as we
know, this is the first proposal for a dynamic honeypot that can be installed on
any network device in order to test network devices, being capable of confusing
the attacker, as he/she never knows if it is a network device or a honeypot placed
for this purpose. IoT environments benefit from this solution as sensors are often
the most vulnerable devices on a network.

It combines IDS and IPS systems to detect and automate the honeypot ini-
tialization process according to what is happening in the network (environment).
This process can be used as the first line of defense for active or passive intrusion
detection and prevention, as it also allows insights into new attacks.



Threat Detection with Honeypots for IoT 13

Contrary to previous work, the idea is not to have a fixed honeypot but to
have a set of devices that can be used at any time as a honeypot (adapted to
the most recent threat) to test the network for these possible threats and then
report to the MISP. Also, we developed a honeypot solution that can run on
multiple devices of different architectures without allocating specific hardware.

We have experimentally demonstrated that deploying decoy systems in on-
premises infrastructure is possible and feasible, even on power-constrained de-
vices. Regarding latency and comparing to standard HaaS, we reduced it from
360ms to closer to 0ms.

7 Future Work

As future research challenges, the paper should be extended with real-world
use cases, which must include an evaluation of the normal functioning of IoT
devices while acting as a honeypot and other evaluation parameters such as
memory consumption and power consumption in a real-world IoT use case.

We think another exciting path focuses on enhancing the system with human-
in-the-loop mechanisms. In addition to the supervision performed automatically
by the system, a user must be able to add their domain knowledge that could
identify points of failure and new rules for improving the detection of abnormal
patterns, reducing false alarm rates and adversarial attacks. As misclassification
can have serious consequences, human-in-the-loop should be used to confirm all
patterns and decisions. In this sense, human-in-the-loop in IPS and IDS systems
can validate the abnormal events and generate rules to feed the first defense layer.
On our current implementation, an administrator can add rules with Fail2ban,
but it is essential to make more steps for the overall system, allowing the launch
of honeypots with new rules.

If an attacker gains access to the system, they may attack the system (as
explained in the security analysis section), but one solution to blocking this
type of attack is to use multiple software vendors to perform this process. In
combination with Byzantine Fault Tolerance (BFT), it will mitigate and detect
another vector of attacks on the host machine, allowing to identify wrong answers
from the system.

Acknowledgements. This work is financed by National Funds through the
Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia,
within project LA/P/0063/2020.

The work of Simão Silva was partially funded by the SafeCities POCI-01-
0247-FEDER-041435 project through COMPETE 2020 program. The work of
Patŕıcia R. Sousa was partially supported by the Project “City Catalyst – Catal-
isador para cidades sustentáveis”, with reference POCI-01-0247-FEDER-046119,
financed by Fundo Europeu de Desenvolvimento Regional (FEDER), through
COMPETE 2020 and Portugal 2020 programs. João S. Resende’s work was par-
tially supported by the EU H2020-SU-ICT-03-2018 Project No. 830929 Cyber-
Sec4Europe (cybersec4europe.eu). National Funds also partially supported this



14 Simão Silva et al.

work through the Agência para a Modernização Administrativa, program POCI
- Programa Operacional Competitividade e Internacionalização, within project
POCI-05-5762-FSE-000229.1.

References

1. DShield Honeypot. https://isc.sans.edu/honeypot.html, (Accessed on
25/01/2022)

2. LXD - Introduction. https://linuxcontainers.org/lxd/introduction/, (Ac-
cessed on 26/07/2021)

3. Malware Statistics & Trends Report. https://www.av-test.org/en/statistics/
malware/, (Accessed on 26/01/2021)

4. Opencanary honeypot. https://opencanary.readthedocs.io/en/latest/, (Ac-
cessed on 25/01/2022)

5. Virtualization-Based Sandboxes are Vulnerable to Advanced Malware. https:

//www.lastline.com/blog/virtualization-based-sandboxes/, (Accessed on
28/05/2021)

6. Artail, H., Safa, H., Sraj, M., Kuwatly, I., Al-Masri, Z.: A hybrid hon-
eypot framework for improving intrusion detection systems in protecting
organizational networks, journal = Computers & Security 25(4), 274–288
(2006). https://doi.org/https://doi.org/10.1016/j.cose.2006.02.009, https://www.
sciencedirect.com/science/article/pii/S0167404806000587

7. Bellard, F.: QEMU, a fast and portable dynamic translator. In: USENIX annual
technical conference, FREENIX Track. vol. 41, p. 46. Califor-nia, USA (2005)

8. Canonical: Multipass orchestrates virtual Ubuntu instances. available at: https:
//github.com/canonical/multipass (Accessed 20 July 2021) (2015)

9. Catakoglu, O., Balduzzi, M., Balzarotti, D.: Automatic extraction of indicators of
compromise for web applications. In: Proceedings of the 25th international confer-
ence on world wide web. pp. 333–343 (2016)

10. Editors, I.I.: US adults added 1 hour of digital time in 2020. https://www.

emarketer.com/content/us-adults-added-1-hour-of-digital-time-2020 (01
2021), (Accessed on 19/08/2021)

11. Franco, J., Aris, A., Canberk, B., Uluagac, A.S.: A survey of honeypots and hon-
eynets for internet of things, industrial internet of things, and cyber-physical sys-
tems. IEEE Communications Surveys & Tutorials 23(4), 2351–2383 (2021)

12. Guo, M., Wang, J.A.: An ontology-based approach to model common vulnerabili-
ties and exposures in information security. In: ASEE Southest Section Conference
(2009)

13. Hu, Y., Nanda, A., Yang, Q.: Measurement, analysis and performance improvement
of the Apache web server. In: 1999 IEEE International Performance, Computing
and Communications Conference (Cat. No. 99CH36305). pp. 261–267. IEEE (1999)

14. Jafarian, J., Niakanlahiji, A.: Delivering Honeypots as a Service (01 2020).
https://doi.org/10.24251/HICSS.2020.227

15. Javaid, A., Niyaz, Q., Sun, W., Alam, M.: A deep learning approach for network
intrusion detection system. Eai Endorsed Transactions on Security and Safety 3(9),
e2 (2016)

16. Khan, N.F., Mohan, M.M.: Honey pot as a service in cloud. International Journal
of Pure and Applied Mathematics 118(20), 2883–2888 (2018)

https://isc.sans.edu/honeypot.html
https://linuxcontainers.org/lxd/introduction/
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://opencanary.readthedocs.io/en/latest/
https://www.lastline.com/blog/virtualization-based-sandboxes/
https://www.lastline.com/blog/virtualization-based-sandboxes/
https://doi.org/https://doi.org/10.1016/j.cose.2006.02.009
https://www.sciencedirect.com/science/article/pii/S0167404806000587
https://www.sciencedirect.com/science/article/pii/S0167404806000587
https://github.com/canonical/multipass
https://github.com/canonical/multipass
https://www.emarketer.com/content/us-adults-added-1-hour-of-digital-time-2020
https://www.emarketer.com/content/us-adults-added-1-hour-of-digital-time-2020
https://doi.org/10.24251/HICSS.2020.227


Threat Detection with Honeypots for IoT 15

17. Kostopoulos, A., Chochliouros, I.P., Apostolopoulos, T., Patsakis, C., Tsatsanifos,
G., Anastasiadis, M., Guarino, A., Tran, B.: Realising honeypot-as-a-service for
smart home solutions. In: 2020 5th South-East Europe Design Automation, Com-
puter Engineering, Computer Networks and Social Media Conference (SEEDA-
CECNSM). pp. 1–6. IEEE (2020)

18. La, Q.D., Quek, T.Q., Lee, J., Jin, S., Zhu, H.: Deceptive attack and defense game
in honeypot-enabled networks for the internet of things. IEEE Internet of Things
Journal 3(6), 1025–1035 (2016)

19. López-Morales, E., Rubio-Medrano, C., Doupé, A., Shoshitaishvili, Y., Wang, R.,
Bao, T., Ahn, G.J.: Honeyplc: A next-generation honeypot for industrial control
systems. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security. pp. 279–291 (2020)

20. Mphago, B., Mpoeleng, D., Masupe, S.: Deception in web application honeypots:
Case of glastopf. International Journal of Cyber-Security and Digital Forensics
6(4), 179–185 (2017)

21. Provos, N.: Honeyd - A virtual honeypot daemon. In: 10th DFN-CERT Workshop,
Hamburg, Germany. vol. 2, p. 4 (2003)

22. Provos, N., et al.: A Virtual Honeypot Framework. In: USENIX Security Sympo-
sium. vol. 173, pp. 1–14 (01 2004)

23. PyMISP, G.: PyMISP - Python Library to access MISP. PyMISP (accessed on 20
February 2021) https://github.com/MISP/PyMISP

24. Senthil Kumaran, S.: Practical LXC and LXD: linux containers for virtualization
and orchestration. Springer (2017)

25. Tirumala, A.: Iperf: The TCP/UDP bandwidth measurement tool.
http://dast.nlanr.net/Projects/Iperf/ (1999)

26. Tools, K.Y.: Glastopf - a dynamic, lowinteraction web application honeypot
27. Wagner, C., Dulaunoy, A., Wagener, G., Iklody, A.: Misp: The design and imple-

mentation of a collaborative threat intelligence sharing platform. In: Proceedings
of the 2016 ACM on Workshop on Information Sharing and Collaborative Security.
pp. 49–56 (2016)

View publication stats

https://github.com/MISP/PyMISP
https://www.researchgate.net/publication/364193596

	Threat Detection and Mitigation with Honeypots: A Modular Approach for IoT

