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Abstract. As the digital world grows, data is being collected at high
speed on a continuous and real-time scale. Hence, the imposed imbal-
anced and evolving scenario that introduces learning from streaming
data remains a challenge. As the research field is still open to consis-
tent strategies that assess continuous and evolving data properties, this
paper proposes an unsupervised, online, and incremental anomaly detec-
tion ensemble of influence trees that implement adaptive mechanisms to
deal with inactive or saturated leaves. This proposal features the fourth
standardized moment, also known as kurtosis, as the splitting criteria
and the isolation score, Shannon’s information content, and the influ-
ence function of an instance as the anomaly score. In addition to improv-
ing interpretability, this proposal is also evaluated on publicly available
datasets, providing a detailed discussion of the results.

Keywords: Streaming data · Online · Incremental · Unsupervised ·
Anomaly detection · Ensemble · Kurtosis · Influence function

1 Introduction

The data revolution has branded the XXI century as the amount of data and
heterogeneous platforms, responsible for mining information, constantly increase.
Although this prospect provides meaningful patterns relevant in various fields
such as healthcare and fraud detection, it also imposes privacy and security con-
cerns, as well as efficient standardization to handle high speed and voluminous
data, constantly expanding and evolving [1].

In anomaly detection, learning from data streams remains a challenge as it
must consider an infinite and constantly changing nature that involves learn-
ing from imbalanced domains and forcing the evaluation process to encompass
metrics that do not neglect the minority class [2]. Furthermore, the data flow
depicted in most everyday scenarios matches the characteristics of a continu-
ously evolving paradigm that introduces resource limitations and requirements
for incremental and adaptive processing that delivers responses in a real-time
fashion. As a result, concept drift, where the properties of the stream may change
over time, is a major point of discussion. An effective mechanism for alleviating
concept drift and improving the representation of under-represented values is



2 I. Martins et al.

combining different base models in an ensemble approach. Ensemble methods
for data stream mining have gained considerable popularity due to their high
predictive capabilities, ability to confer robustness, and generalization [3].

Considering that anomalies are few and different compared to the rest of
the data, the proposed method isolates anomalies, rather than profiling regular
points, and attempts to determine the influence of each instance in the observed
statistics in their groups. Unlike other methods that randomly select a splitting
attribute, our approach favors the dimension that shows an increase in the fourth
standardized moment (kurtosis), a measure of the heaviness of the tail of the
distribution, as it is more likely to contain an outlier. This approach helps to
tackle irrelevant dimensions that may lead to missing crucial anomalies [4].

In anomaly domains, it is relevant to identify abnormal or potentially defec-
tive events and localize the features that caused a distribution shift, which can
be a critical step in the diagnosis. In this sense, our purpose is to design an on-
line ensemble method that attempts to characterize the underlying distributions,
isolating dynamics as they do not align with the expected behavior. Thus, the
anomaly score is dictated by the complexity of the isolation process and the level
of surprise given by the event’s unpredictableness. Furthermore, as the influence
of a sample that differs from the rest of the dataset tends to be larger than
for normal points [5], the influence function of the proposed splitting heuristic
will be used to score the deviation of an instance, measuring how deviating an
example appears to be in a given distribution.

Therefore, the most significant contribution of this work is the design of
a fully incremental and unsupervised anomaly detection strategy that focuses
on identifying and curbing anomalous events by proposing online predictions
where the algorithm responses are available sequentially over time. Moreover,
to ensure a reliable representation of the evolving data characteristics that may
lead to an obsolete model, this proposal also studies control mechanisms to
examine the activity in the leaves and the consistency of the structure, that is,
the ability to closely represent the observed behavior. Moreover, this procedure
returns an anomaly score composed of three different metrics that could increase
interpretability. Lastly, as it is imperative to attest to the effectiveness of the
proposed methods in realistic scenarios, it also discusses and analyzes the results
from testing this approach on publicly available real-time benchmark datasets
with a distinctive number of points, dimensions, and anomalies.

Concisely, the paper is organized as follows: Section 2 provides a review of the
current and most effective solutions that serve as motivation and inspiration to
this work; Section 3 describes the implemented method from its principles to the
basic unit of the ensemble and the anomaly score, completing with the pseudo-
code of an influence tree; Section 4 gathers the experimental trials and discussion
of the results; finally, Section 5 closes this paper by stating final remarks and
advancing future research directions and possible improvements.
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2 Related work

With the volume and speed of real-time data increasing, obtaining large amount
of labeled data, specially in an imbalanced scenario, is a topic of interest. In re-
cent years, the attention to methods such as autoencoders [6] or random forest [7]
have changed toward unsupervised approaches such as isolation forests [8], an
ensemble method, Local Outlier Factor (LOF) [9] as a density-based clustering
solution, or One-class SVM [10], a kernel-based unsupervised learning technique.

Since the increasing search for real-time and adaptive streaming solutions,
the community dedicated their scope to improving and adapting batch solutions
to a continuous processing setting. As an example, Pokrajak et al. [11] proposed
an incremental version of LOF, where the the outlier factor is computed for
each incoming data point, updating its statistics only with a few data points.
Despite being an incremental method that can handle different densities and
detect changes in data distributions, this solution demands high computational
resources [12].

In real-time applications, predictions should be made online, where the algo-
rithm identifies anomalies before incurring the actual event. Opposite to isolation
trees, where both the split attribute and value are randomly selected to isolate
abnormal instances at higher levels [8], Putina et al. [13] presents the Random
Histogram Forest, an unsupervised and probabilistic approach, that builds a ran-
dom forest based on the fourth central moment, also known as kurtosis, to guide
the search for anomalous instances. In each leaf, the anomaly score, defined as
the Shannon’s information content, captures the likelihood of an example being
an outlier [14]. Although it retains linear running time in the input size, this
method does not implement an online streaming solution.

Although Isolation Forest [8] is an efficient method for anomaly detection
with relatively low complexity, CPU, and time consumption, it requires all the
data to build the forest, as well as pass over the dataset to assign an anomaly
score. Thus, Ding et al. [15] adapted the isolation concept to streaming events
using sliding windows. An important feature of this work is the ability to deal
with concept drift by maintaining one input desired anomaly rate that deter-
mines if the detector is obsolete and if the latest data window should be used to
build a new classifier.

Furthermore, Tan et al. [16] introduced a fast one-class anomaly detector
for evolving data streams featuring an ensemble of random HS-Trees that does
not require any data to build its structure. Unlikely Hoeffding Tree that induce
decision trees and alter its structure dynamically by measuring the confidence
of a splitting attribute heuristic as a new instance arrives [17], HS-Trees have a
constant amortized time and memory complexity that records the mass profile
of data operating with two consecutive windows where the learned profile is used
to infer the anomaly scores of new data arriving in the latest window.

More recently, Guha et al. [4] proposed a non-parametric and unsupervised
anomaly detection solution on streams based on the influence of an unseen
point. This idea measures the externality imposed by that point by averag-
ing the change in complexity. This ensemble of independent random-cut trees,
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named Robust Random-Cut Forest (RRCF), provides a dynamically maintained
strategy that allows incremental updates with as few changes as possible. Com-
paratively to other proposals, where node split is uniformly chosen at random,
RRCF determines the dimension to cut proportionally to the attributes’ range,
which makes this solution more resilient to irrelevant dimensions.

3 Online and Incremental Influence Forest

Similarly to the isolation-based method introduced by Liu et al. [8], this work
recursively splits the data through a tree. In the original proposal, anomalies are
expected to be quickly isolated, lying closer to the root, whereas normal instances
are located deeper. This proposal attempts to identify the feature that influences
the distribution’s shape by measuring the concentration of values around the
mean and the tails. The statistical measure that accounts for both peakedness,
the concentration of probability mass around the mean, and heavy-tailedness,
extreme values occurring with nonnegligible probability, is given by the stan-
dard fourth moment coefficient of kurtosis. The kurtosis of a random variable X
(K[X]) is defined in Equation 1, where µ and σ stand for the mean and standard
deviation, respectively, and µ4 represents the fourth central moment [18].

As it is perceived in Equation 1, the standardized data is raised to the fourth
power, which implies that instances within the region of the peak have a negli-
gible contribution to the kurtosis score, while extreme observations outside the
region of the peak (e.g., outliers) contribute the most. Moreover, since kurto-
sis is a standardized measure that describes the shape of the distribution, it is
invariant to scale or location.

K[X] = E

��
X−µ
σ

�4
�
= E[(X−µ)4]

E[(X−µ)2]2 = µ4

σ4 (1)

Furthermore, influence functions are a classic technique from robust statistics
that assesses how the model parameters change as a training point significance
is increased by an infinitesimal amount [19]. Hence, this technique promotes the
knowledge of the impact of data contamination when a point mass or perturba-
tion is added to a statistic value to deviate it from the expected distribution.

The kurtosis influence function, IF (x;K(.)), described in Equation 2, which
gives the name to this approach, provides a quantitative understanding of kur-
tosis (K(.)) when the contamination has occurred at point x. The expression,
detailed by Fiori et al. [20], reveals that the contamination in both the tails and
the center of the distribution increases this coefficient. Thus, as the influence
function is unbounded, the kurtosis coefficient is sensitive to outlying values.
Therefore, this formula estimates the contamination degree when an observa-
tion is added, helping to assess the impact of including a particular point and
its degree of outlierness.
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3.1 Influence Tree

Given a sample of data X = x1, ..., xn of n instances from a d-variate distribution,
to build a binary influence tree, the data space is recursively divided by selecting
an attribute based on the heuristic measure, in this case, kurtosis, K. As this
measure is expected to be affected by abnormal points, the highest value in this
importance will indicate the presence of an outlier. However, it must be ensured
that there is enough statistical evidence that the distribution has changed or
that the number of instances processed is sufficient.

Similarly to the Hoeffding Trees [17], this approach wields Chebyshev’s in-
equality, widely used in probability theory, to bound the tail probabilities of a
random variable with finite variance. In particular, unlike other methods, this
inequality can be applied to any distribution as long as it includes a defined
variance and mean [21]. In other words, this will help to attest if, with a certain
confidence, the heuristic measure has suffered an unexpected change.

Considering that Xa holds the highest observed K and, as depicted in Equa-
tion 3, if the last observation added forced the K(A) to differ from its mean
in more than t units, the probability is, at most, the quotient of the variance
and the squared value of its distance to the mean. In other words, if the differ-
ence from its mean is significantly higher than some value t, the attribute with
the highest importance shows enough evidence that an extreme value has been
added. Thus, it can also be used as a splitting attribute of the node.

Pr[|X − E[X]| ≥ t] ≤ V [X]
t2 (3)

Concerning the splitting criteria, this approach is more similar to the Hoeffd-
ing trees proposal for mining high-speed data streams, which essays to guarantee,
with high probability, that the attribute with the highest heuristic is the best
choice [17]. In addition, this proposal is also inspired by the Random Histogram
Forest that uses kurtosis as its splitting heuristic [13]. Furthermore, when it
comes to the splitting value, similarly to most of the state-of-the-art approaches,
this study randomly chooses a value in the range of values determined so far.

Finally, the leaves update the sufficient statistics for each attribute when an
instance is added to the sample. These statistics include the variables to assess
kurtosis, influence function, range, and the sample size of observed data points,
filtering the incoming instances according to the observed dynamic, and only
expanding when there is enough evidence that the distribution has shifted. In
particular, these numbers are constant, which means the complexity does not
depend on the number of instances, only on the number of attributes.

3.2 Dynamic ensemble

One of the most common ensemble techniques is Bagging, which trains multiple
base models with different points drawn by resampling the original dataset. In
an online version, the forest trains several independent online influence trees to
simulate the bootstrap process by sending a weight to each observation following
a Poisson random variable [22]. This procedure adds another constant to define
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the number of trees in the forest that run in parallel, given their independent
nature.

The online influence forest proposed in this work is structured incrementally
for streaming data that is supposed to be continuous and infinite. As a single
instance is not sufficient to make inferences about a population distribution,
the nodes define a minimum number of instances. However, as the stream of
events progresses, each tree structure cannot grow indefinitely, constraining the
tree depth to a maximum depth bound, user-configurable, to limit the height of
each tree. Consequently, as predictions are made online, the algorithm response
becomes available as the event is being processed, leading to lower scores and
not flagging anomalies until enough points have been examined.

Moreover, attesting if the tree structures are consistent with the dynamics
present in the available sample, that is, whether they are considered obsolete, is
also decisive to ensure that the ensemble is capturing the new data properties
and maintaining its integrity. With the limited size of each tree, an indication
that the structure is becoming saturated and unable to adapt to new instances
is the number of leaves that reaches the maximum height and shows evidence
that a split must occur. Therefore, the number of saturated leaves is supervised
to determine when each structure must be redefined.

This proposal implements additional reframe strategies to control the forest’s
accordance with the data, as illustrated in Figure 1. These strategies supervise
the ability of the algorithm to reflect the current state of dynamics presented in
the available data. Hence, the first strategy checks if, when a sample arrives at
a leaf, the node is still active by checking the time between updates (Inactive
Figure 1). A leaf is considered inactive when, on average, it has been enough
time to record twice the minimum number of instances in a node. In this case, it
might suggest that the parent node has picked the wrong split, and the splitting
value is reframed. Lastly, another approach has been studied to tackle the change
in dynamic or when the tree is considered saturated (Saturation Figure 1). This
method maintains and reframes the tree structure from its root to the leaves
by merging sibling nodes and replacing the parent node on higher levels. Thus,
after the reevaluation, the number of leaves and levels reduce, and the original
tree root, which holds the oldest distribution, is replaced.

Fig. 1: Strategies to guarantee consonance between the tree structure and the
observed data.
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3.3 Anomaly score

The anomaly score vital in unsupervised methods is another crucial component
that attempts to quantify the degree of discrepancy from the expected behavior
according to a set of principles. It is also the only way to comprehend how a
particular decision has been made. In most cases, measuring each observation
and assessing why it has been given a degree of unexpectedness can provide more
insights about the problem at hand than the predictive performance. The de-
mand for higher explainability levels arises as the incompleteness of the problem
formalization increases [23]. In particular, cybersecurity and fault tolerance are
some domains that often require high levels of interpretability.

As this system was inspired by isolation forest [8] and random histogram
forest [13], integrating the influence function, each observation will be described
with an isolation score, the Shannon information content, and the expected value
of the difference between the influence function and its average, for each at-
tribute.

In this regard, the output of our framework consists of a tuple specifying
three metrics. Firstly, as defined in Equation 4, the isolation score measures the
average of the depth of each point from a collection of trees, E[h(x)] and the
average path length of an unsuccessful search in a binary search tree (BST).
According to the expectation that anomalies will be filtered at higher levels, this
formula returns a higher score for deviance values.

By defining a split based on the kurtosis statistic, when there is enough
evidence that the distribution has changed, the leaves will become nodes, and
the instances will not progress in the structure as the tree grows. The following
scores will account for the density and the average poisoning when an observation
is added to a leaf to survey the in-node distribution. Next, Equation 5 calculates
the Shannon information content, level of surprise, by measuring the probability
of the cardinality of the leaf over the number of seen examples. Hence, anomalies
will record higher levels of Shannon’s information. Finally, the influence function
is added to the equation. As this estimator deems the effect of adding one point to
the distribution, this function returns the degree of contamination that a specific
instance implies to the leaf. Thus, this statistic is related to the anomalousness
degree of observation in a particular distribution. As this work is designed for
multivariate analysis, the influence score, shown in Equation 6, is given by the
variability, over all attributes, of the kurtosis influence function when an example
reaches a leaf (IF (x;K(.))).

c(n) = 2H(n− 1)− (2(n− 1)/n) isolation(x;n) = 2−
E[h(x)])

c(n) (4)

PLeaf [x] =
|Leaf(x)|

N
surprise(x) = log

�
1

PLeaf [x]

�
(5)

influence(x) = E[(IF (x;K(.))− E[IF (x;K(.))])2] (6)

Finally, the pseudo-code that illustrates the designed tree is represented in
Algorithm 1.
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Algorithm 1 kInfluence: Online and Incremental Influence Tree
Input : node: node of an influence tree;

Ex: Example of a Stream;
K(.): Splitting evaluation heuristic;
δ: significance of choosing the correct splitting attribute;
Nmin: minimum sample size to test splitting significance;
maxDepth: maximum depth a tree is allowed to grow.

Output: anomaly score metrics indexed by the row in stream
begin

if node is a leaf then
Update sufficient statistics (Subsection 3.1);
Let n ← sample size in leaf;
if n > Nmin and Ex is not empty then

if node is inactive then
Reframe parent node (Figure 1);

else
Let Xa be the attribute with the highest K(.);
p ← 1− |K(A)−E[K(A)]|2

V ar[K(A)]
; (Equation 3)

if p < δ then
Let h ← depth of the tree and saturation ← #saturated_leaves

#leaves
;

if h ≥ maxDepth ∧ saturation > 0.5 then
Check for consistency and reframe tree (Figure 1);

else
Split Attribute ← Xa;
Split Value ← v ∼ U(minXa,maxXa));
Let node.left ← left child and node.right ← right child;

Let score ← {index : [isolation, shannon, influence]} (Subsecton 3.3)
else

score ← kInfluence(node.left, Ex[node.X ≤ node.v]);
score ← kInfluence(node.right, Ex[node.X > node.v]);

return score;
end

4 Experimental Evaluation

Given the imbalanced nature of anomaly detection, the evaluation metric must
be independent of the majority class. The precision, recall, and F1-score will be
used in these experiments. While the recall is about completeness, concentrating
on the percentage of correctly identified anomalies, precision calculates the rate
of true positives over the detected anomalies, measuring the probability of correct
detection of positive values and penalizing false alarms. Therefore, Fβ is used
to monitor several measures simultaneously. In this case, β = 1 assumes that
precision and recall are equally important [2].

Hence, an experimental evaluation was conducted on open-source datasets
from different domains to attest to the performance of the proposed method.
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Table 1: Experimental trial metrics
Dataset kInfluence

Name #points #dim. %outliers Precision Recall F1

Ecoli3 336 7 2.6% 0.5 0.67 0.57

WBC3 278 30 5.6% 0.57 0.62 0.59

Ionosphere3 351 33 2.6% 0.30 0.55 0.39

Key Hold4 1883 1 0.006% 0.63 0.83 0.71

Key Updown4 5316 1 0.0008% 0.45 0.63 0.53

NYC4 10320 1 0.0005% 0.75 0.6 0.67

These examples, also considered in similar works, are available at Outlier De-
tection DataSets (ODDS) [24] and Numenta Anomaly Benchmark [25], a novel
benchmark for evaluating online streaming anomaly detection applications. Ta-
ble 1 summarizes the evaluation results where each row refers to a single dataset.
The first four columns describe the data according to the number of instances,
dimensionality, and the proportion of anomalies present. Besides the size dif-
ference in the first three datasets, these serve as multivariate analyses, and the
last three as timeseries analyses. For these trials, as the algorithm parameters
were kept constant, the procedures were conducted ten times to stabilize the
outcomes, featuring a forest of 100 trees, 30 instances, and 95% confidence as
the minimum number of points in the node and the probability to choose a split,
respectively, and a maximum depth of 6. These values should be analyzed as a
future direction, and each iteration will be plotted to understand this proposal’s
complexity and stabilizing times.

Although this proposal envisions an unsupervised learning method, an ex-
perimental evaluation, which should provide insights into how this approach
behaves with distinct dimensions, sizes, or anomaly frequencies, compares the
actual position of the outliers and the score information returned by our solution
in a supervised manner. Given the online and incremental properties designed
here, the algorithm requires a stabilizing time to accurately score points, as the
first instances arriving will not be sufficient to make inferences. In this sense,
to frame a realist scenario and not to compromise the performance, the outliers
were randomly reorganized such that anomalies do not appear simultaneously
or do not unfold in the first moments. As a result, only the timeseries datasets
did not suffer any changes from the original form. Furthermore, as the similar
approaches that inspired this work are designed with different characteristics or
testing scenarios, their results will not be compared in this work. For the time-
series, despite working online and incrementally, our method missed one more
anomaly than RRCF [4] and added one more point as critical, rendering a higher
false alarm rate or lower recall.

3http://odds.cs.stonybrook.edu/[NAME]-dataset/
4https://github.com/numenta/NAB/tree/master/data/realKnownCause/
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In a more detailed evaluation, as the last three datasets qualify as timeseries
and facilitate the interpretation, they will be discussed closely, and the results
and decision criteria will be analyzed.

The Key Hold dataset represents the timing of the key holds for several
computer users, where the anomalies represent a change in the user. As critical
anomalies are the ones that stand out amongst other points, it is possible to
see different transitions reflecting an unexpected value for the key holds on that
day. Figure 2a, from left to right, highlights the anomalies in red; the plot in
the middle depicts the isolation, surprise, and influence score returned by our
algorithm; and, finally, the last graph on the right investigates which observa-
tions classify with higher influence score as well as with higher surprise score.
This figure shows that anomalies significantly differ from the rest of the values.
Based on the definition of an anomaly, such points are more likely to appear on
the upper side of the current trend. Furthermore, on the last graph, it is possible
to see that the observations that score the highest ratings on the influence met-
ric are usually points on the transition between values on similar timestamps,
particularly after the first fortnight.

The Key Updown dataset describes keystrokes for several computer users,
where the anomalies embody a change in the user. As assumed, abnormalities
represent a significant transaction in their value. Figure 2b displays the anomalies
in red; the metrics returned by our algorithm where, opposite from what is
identified in the last trial, the influence score distinguishes points in the critical
area. In particular, the last plot places outliers with influence, isolation, and
surprise scores significantly more prominent than the surrounding observations.
Moreover, as expected by the kurtosis and influence function, it is evident that
orders that fall on the distribution’s tails have their score increased, which is
evident on the last graph where the tails of each timestamp are stressed as
critical.

The NYC dataset corresponds to the number of NYC taxi passengers with
five anomalies occurring during the NYC marathon, Thanksgiving, Christmas,
New Year’s day, and a snowstorm. The data file aggregates the total number of
taxi passengers into 30-minute buckets. Therefore, to simplify, an anomaly often
does not refer to a single observation but a time frame. Figure 2c illustrates the
first timestamp with anomalous behavior issues. For instance, the first anomaly
observed, the NYC marathon, has a lower value than the following numbers of
passengers. From the metrics returned, depicted in the middle graph, there are
not many anomalous points correctly predicted as critical. Since this dataset
has many observations to be inspected with the naked eye, it is essential to
examine the last plot to check which instances are flagged as dangerous. Thus, it
is possible to see that the points with the most significant influence, isolation, and
surprise scores have the highest number during the NYC marathon. Furthermore,
despite their lower influence score, the isolation score spots the snowstorm as an
outlier. The last anomaly correctly spotted was New Year’s day, with a density
and isolation score different from the peripheral. Another observation at the
beginning of September registers similar scores as the New Year’s day, which are
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identical by analyzing the recorded value. However, our approach was not able
to detect Thanksgiving and Christmas days.

(a) key Hold dataset

(b) Key Updown dataset

(c) NYC dataset

Fig. 2: Exprimental plots



12 I. Martins et al.

5 Conclusion and Future Directions

This paper proposes an online, incremental, and unsupervised forest for stream-
ing anomaly detection that focuses on selecting the best attribute according to
the kurtosis score. Praising the interpretability of the output, the model defi-
nition of an anomaly captures both the complexity of isolating an outlier, the
surprise level when an instance reaches a node, and the contamination effect
imposed by a discrepant observation.

Given this proposal’s online and incremental nature, this approach is essential
in studying anomaly detection in streaming data. Despite implementing methods
to avoid inadequate splits or obsolete structures, the next step will be to study
the ability to adapt to dynamic changes, as well as further evaluate the effects of
the required parameters, from tuning the number of necessary instances in the
node to the number of trees or maximum height of the structure. Furthermore, a
future step will be to study the repeatability and comparison with the approaches
that inspired this work on a similar testing evaluation scenario.

Therefore, the next future direction should include parameter tuning and the
benefit of maintaining a window with the latest points to control the consistency
of the forest while evaluating the impact on the false alarm rate and recall to
maximize the performance, bearing in mind an extensive comparison with the
identical studies in the literature.
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