Looking at the Clouds: Leveraging Pub/Sub Cloud Services for
Censorship-Resistant Rendezvous Channels

Afonso Vilalonga Jodo S. Resende Henrique Domingos
Universidade NOVA de Lisboa & Universidade do Porto Universidade NOVA de Lisboa &
NOVA LINCS Portugal NOVA LINCS
Portugal jresende@fc.up.pt Portugal

j.vilalonga@campus.fct.unl.pt hj@fct.unl.pt
ABSTRACT proxy, server, or network node in a censorship evasion system.

Many censorship evasion systems rely on establishing a connection
between the user and a proxy that acts as the gateway to censored
content. However, informing the user about proxy addresses or
exchanging the necessary information to establish a connection
between the user and the proxy when the user resides in a censored
region without access to non-blocked proxies is not a trivial task.
In this paper, we address the problem of creating a censorship-
resistant communication channel where information about how
to establish these user-proxy connections (e.g., proxy IPs) can be
effectively transmitted with a low risk of a censor blocking the
communication channel, even if the censor has the same knowledge
of how to operate them as the user. To this end, we designed and
developed a prototype of a rendezvous protocol — a censorship-
resistant communication channel for data transmission typically
used for bootstrapping connections in censorship evasion systems
— leveraging Pub/Sub cloud services, a popular and widely used
service available across different cloud providers.

KEYWORDS

Anti-censorship, Rendezvous protocols, Cloud services, Communi-
cation protocols

1 INTRODUCTION

The Internet’s potential for global connectivity and dissemination
of information makes it a primary target for censorship by au-
thoritarian regimes (i.e., censors) [4, 10, 27, 28, 37]. These regimes
perceive unrestricted access to information as a threat and, as such,
aim to assert control over their population, manipulate information,
and maintain the existing status quo within their jurisdiction by en-
forcing online censorship [21, 22]. In response to these challenges,
censorship evasion systems have emerged to enable users to main-
tain connections while traversing censored regions. Censorship
evasion systems employ various strategies to remain unblocked,
such as tunneling data in “regular” protocols [3, 5, 31], protocol
mimicking [25], traffic obfuscation [1], steganography [13], etc.
Typically, these systems operate by having the user establish a con-
nection with a proxy using one of the above methodologies, which
then routes the user’s traffic to censored content [32]. Throughout
this paper, we adopt the term "Bridge" from Tor [7] to denote any
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a BY

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Free and Open Communications on the Internet 2024 (2), 27-33
© 2024 Copyright held by the owner/author(s).

This work is licensed under the Creative Commons Attribu-

27

However, using censorship evasion systems in heavily censored
regions is often restricted, and the IPs of bridges are frequently
blocked due to enumeration attacks [9, 12].

One of the primary challenges associated with censorship eva-
sion systems is distributing new Bridge “information” (e.g., IP ad-
dresses) to users who require it, especially those with limited access
to uncensored regions and whose old Bridges might be blocked.
This problem is commonly referred to as the Bridge Distribution
Problem and has been extensively researched [8, 26, 30, 35]. We
use an extended notion of “information” to encompass any data
required for the establishment of a connection between the user
and the Bridge, which may include more than just IP addresses, and
divide the Bridge Distribution Problem into what we think are two
adjacent subproblems: I) How can information on how to establish
the covert connection be effectively transmitted through a commu-
nication channel between users and Bridges with a low risk of the
communication channel being blocked, especially considering that
the censor may possess the same knowledge of how to operate them
as the user? IT) How can we guarantee that the distributed Bridge
information does not fall into the hands of censors or malicious
users who could, in turn, block it?

This paper addresses the first subproblem described by design-
ing a system based on a popular service available among Cloud
providers, the Pub/Sub service, that can act as a rendezvous pro-
tocol [5, 32]. Rendezvous protocols or channels are censorship-
resistant communication channels commonly used to bootstrap
communication channels between users and Bridges. They leverage
widely popular services or protocols that would cause significant
collateral damage to most censors if blocked but are too costly (in
terms of performance, price, or other metrics) to be used for regular
traffic exchange. We implement a preliminary version of our system
that facilitates indirect message exchange between the user and a
Broker (i.e., a server holding information about available Bridges)
by leveraging, specifically, the Google Pub/Sub service [20]. We
then proceed to discuss the security of our system and present some
preliminary results related to performance.

2 BACKGROUND

This section discusses our problem statement, how it relates to the
Bridge Distribution Problem and the current state of rendezvous
protocols.

2.1 Problem Statement

Most censorship evasion systems rely on users needing the IP ad-
dress of Bridges to establish connections or on the exchange of


https://creativecommons.org/licenses/by/4.0/

Free and Open Communications on the Internet 2024 (2)

information between the user and the Bridge to establish a connec-
tion [32]. Some systems assume users exchange this information
through out-of-band channels, such as public and/or private forums,
private chat rooms, and messaging applications [29]. Public forums
are far from ideal because they can be easily identified and blocked,
and the information they contain is publicly available. Although
more restrictive than public forums, messaging apps, private fo-
rums, and private chat rooms require manual user effort and may
only be a realistic option for some users. Moreover, in specific cases
such as TorKameleon [31] or Snowflake [5], which use WebRTC
connections to carry covert data, merely providing the IP address of
the Bridge is insufficient to establish a censorship-resistant connec-
tion. Additional information (i.e., a signaling protocol) is required to
establish the WebRTC connection between the user and the Bridge.
The complexity of the bidirectional communication bootstrapping
protocol in such systems makes it particularly challenging to use
solutions that require manual effort. As such, the question of how
to exchange or share such information is of great interest (i.e., the
Bridge Distribution Problem [8, 26, 30, 35]). How can information
about new Bridges, as well as other necessary information for es-
tablishing user-to-bridge connections, be shared and exchanged
between users and Bridges in heavily censored regions in a man-
ner that remains unblocked, even if the censor possesses the same
information about the rendezvous protocol as the user?

In this paper, we are particularly interested in addressing the
challenge of reaching users in “unreachable” regions due to censor-
ship and providing them with the necessary information to connect
with a Bridge. We consider this one of the two subproblems of the
Bridge Distribution Problem. The second subproblem, preventing
new Bridges from being blocked or ensuring that Bridges are only
sent to trusted users, is left for future work. We address this first
subproblem by developing a censorship-resistant rendezvous proto-
col that does not require secrecy to remain unblocked. Rendezvous
channels or protocols [5, 32] leverage popular authorized services
in the censored region as a front to carry covert information. They
should, in theory, resist blocking attempts because blocking the
services used by the rendezvous channels as carriers would result
in collateral damage that the censor would be unwilling to accept.

2.2 Rendezvous Channels

Recent literature has showcased different mechanisms designed for
rendezvous channels. One of the most popular methods is domain
fronting [11]. The concept behind domain fronting is to enable a
user to communicate with a blocked host through an intermediary
such as a CDN. Domain fronting works by altering the externally
visible hostname (SNI) from that of the censored content to a dif-
ferent “front domain”, making it appear that the user is connecting
to an allowed host. The AMP framework, a framework for web
pages written in a restricted dialect of HTML, has also been used
as a rendezvous protocol. This framework includes a free-to-use
cache server that can serve as an intermediary for a rendezvous
channel, acting like a proxy. Similar to our system, Amazon’s mes-
saging queuing service (Amazon SQS) is also used as a carrier
for a rendezvous channel by exchanging messages through unidi-
rectional queues [34]. Due to the nature of their covert channels,
some censorship evasion systems can also function as rendezvous

28

A. Vilalonga et al.

protocols. For example, CloudTransport [6] uses storage services
from cloud providers to transmit information between a user and
a Bridge. In [36], push notification services are used for censor-
ship evasion. Email services are also used by systems such as the
ones in [23, 33, 38]. MoneyMorph [24] uses cryptocurrencies to
evade censorship. Finally, Raceboat [32] presents a framework that
facilitates developing and managing rendezvous channels.

3 SYSTEM ARCHITECTURE

This section introduces the developed protocol, its implementation,
the threat model, and the system’s security considerations.

3.1 Protocol Design

We present the architecture of the developed system in Figure 1.
This system comprises four main actors: the user, the Broker, the
Pub/Sub service, and the Bridge. The user represents the system
user within the censored region. The Broker is a server that acts
as a middleman between the Bridge and the user, holding infor-
mation about Bridges and communicating directly with them on
the user’s behalf. Having a Broker is advantageous as it allows
for a more modular approach to rendezvous systems, rather than
relying entirely on censorship evasion systems to accommodate
the rendezvous protocol and implement its functionality [5]. The
Pub/Sub service is the censorship-resistant communication channel
and relays all messages between the user and the Broker. Finally,
the Bridge works as the proxy for the censorship evasion system.
When the user’s Bridge is blocked (1), the user can initiate contact
with the Broker using our protocol through the Pub/Sub service to
acquire information about a new Bridge or exchange the informa-
tion needed for a new Bridge connection (2). The Pub/Sub service
operates through topics and subscriptions. Subscribers subscribe
to specific topics and only receive messages published on those
topics. Once the user and the Bridge have the information needed,
they can establish the new connection (3). Our implementation
uses the Google Pub/Sub service, but the design could, in theory, be
modified and extended to be implemented using other services, and
it currently only serves as a proof of concept. We explore different
possibilities for cloud providers in Appendix C.

<>
00 ::: 12} Broker
00 :::

00 :::
Pub/Sub Service

1

1

1
{2} 2}
!

1

]

User
Blocked

1
:
1 Bridge

Censored Region

Figure 1: System architecture.

Our rendezvous protocol is outlined in Figure 2, and we follow
the order of events depicted in the figure. Before delving into the
protocol, it is necessary to establish some background information
on our system. We use two predefined topics as unidirectional
communication channels between users and Brokers. Users use one



Looking at the Clouds: Leveraging Pub/Sub Cloud Services for Censorship-Resistant Rendezvous Channels

to send messages to the Broker (i.e., user’s topic, UT), and Brokers
use another to send messages to users (i.e., Broker’s topic, BT). All
users subscribe to the same topic and thus receive every message
published by the Broker, whether intended for them or another user,
while messages published by users will only be received by Brokers.
We also assume that step (0) is done by each Broker once the Broker
is deployed (during the first setup) and is needed because Brokers
need to create their subscription to the UT topic so that they can
receive messages published by users. For now, to simplify, we also
assume only one Broker.

The initial step in the protocol is creating a subscription specific
to the user for the BT topic, which is performed by the client-side
software (1). After creating the subscription, the user publishes a
CONNECT message in the UT topic containing a randomly gener-
ated session ID (SID) (2). The Broker receives it and publishes, in
the BT topic, the message PUBLIC_KEY with its public key (3).
Upon receiving the message with the public key, the user creates a
symmetric key and encrypts it with the Broker’s public key, pub-
lishing a message SYM_KEY with the encrypted symmetric key
and its SID in plaintext to the UT topic (4). The Broker maintains
the state of each session, specifically which step of the protocol the
session is in and whether a Bridge and symmetric key have already
been established for it. After performing step (3), the Broker will
wait for the symmetric key from the user who initiated the protocol,
i.e., the user with the SID. Upon receiving the symmetric key and
verifying that it is from the expected user by checking the SID, the
Broker waits to obtain information about a new Bridge to send to
the user (5). This mechanism depends on the censorship evasion
system and how Bridges communicate with the Broker. When the
Broker has information to send or has found a Bridge for the user,
it publishes the HAS_BRIDGE message along with the SID of the
intended recipient (6) to the BT topic. The Broker and the user
can now exchange the necessary information through the commu-
nication channels (i.e., the topics) by publishing DATA messages
with their content (i.e., INFO) encrypted using the exchanged sym-
metric key and a symmetric encryption algorithm (e.g., AES-GCM).
Finally, once all the information is exchanged, the user establishes
the connection to the Bridge (8). In Appendix A, we showcase an
alternative design for this protocol.

3.2 Threat Model and Security Considerations

We trust the Broker and the cloud provider not to disclose any
information they possess about the system at any given moment to
censors. The Broker can associate any SID with its symmetric key
and the chosen Bridge, provided that both have already been estab-
lished (i.e., the Broker has access to the session’s state). However,
the Broker cannot infer which specific user (e.g., IP address) has a
particular SID since SIDs are randomly generated by the client-side
software each time the same or a different user initiates our proto-
col. Cloud providers can observe users’ IPs and link them to their
current SIDs, yet they cannot access their symmetric keys or iden-
tify the Bridge to which they are connected. We do not trust users
and assume they may attempt to acquire information about other
users, manipulate the protocol, obtain new Bridge information to
subsequently block it, or employ DoS/DDoS attacks by flooding the
system with requests, thereby throttling it or increasing operational

29

Free and Open Communications on the Internet 2024 (2)

| User ‘
T

Pub/Sub
Service
T

’ Broker ‘ I Bridge ‘
T T

! | 0) create_sub(random_id) !
1 1) create_sub(random_id) e

Publish to UT 1 Publish to BT
Receive from BT ! Receive from UT
2) send(CONNECT, SID) |
—

2) send(CONNECT, SID) |
"

1
! ! 3)send(PUBLIC_KEY, PK) !
I 3)send(PUBLIC_KEY,PK) k=== == === ===~ -
L e - 1
1 ! 1
14) send(SYM_KEY, SID, PK(SK)) 1
—

J
14) send(SYM_KEY, SID, PK(SK))
[ 5) get_new_bridge()
I I
I 1
! 6) send(HAS_BRIDGE, SID) !
e)send(HAS,BR\DGE.S|D;_"‘ ““““““ “I
____________ !
1 1

1
7) send(DATA, SID, SK(INFO))1 7) send(DATA, SID, SK(INFO))1
T 1

1 ) 1
| 8) start_connection() |
I I

________‘_______

Figure 2: Rendezvous Protocol design. The order of the ex-
changed messages is represented in numerical order.

costs (we defer consideration of these last two types of attacks to
future work).

Our protocol leaks the SIDs to all users listening on the BT topic
in steps (6) and (7) (since all users share the same topic for receiv-
ing messages and can see all messages published by the Broker).
However, we argue that this does not reveal anything about specific
users, as users randomly generate their SIDs and have no actual link
to the user. Users could still potentially impersonate other users by
stealing SIDs. This would be possible if the SID was sent in plaintext
to the BT topic before step (4), which is not the case since the SID
is only sent in plaintext to the BT topic for the first time in step
(6). However, at this point, the session already has a symmetric key
established, and all subsequent messages published by the user of
that session are encrypted with it, meaning that the impersonator
would require the symmetric key to publish messages on behalf
of the user. Our system also leaks when the Broker finds a Bridge
for a session (in step (6)). However, this does not provide any in-
formation to malicious users since they do not know which Bridge
is being used or who the user with a specific SID is. Nonetheless,
this could be addressed by encrypting the message HAS_BRIDGE.
Regarding access control, both our system’s client-side and Broker
software require access keys and credentials to interact with topics
and subscriptions in a Google account via the Google Pub/Sub API
Thus, we use Google service accounts [14], enabling specific roles
and permissions within the Google Cloud environment. A single
Google service account is created for all users, with limited per-
missions. Users can only create subscriptions to the BT topic and
publish messages to the UT topic, preventing malicious users from
having more permissions and access than needed and ensuring that
these credentials can be publicly available. Additional details on
these accounts are provided in Appendix B.

3.3 Implementation

We have implemented a proof of concept of our system using the
Go programming language. This prototype consists of two software
components: the code for the Broker and the client-side software
running locally on the user’s device. The Pub/Sub service can be
accessed through REST or gRPC requests to the service endpoints



Free and Open Communications on the Internet 2024 (2)

“https://pubsub.googleapis.com” or “pubsub.googleapis.com:443”,
respectively. In our implementation, we used the Go client library,
opting for the gRPC library [17] instead of the REST API [16].

4 DISCUSSION

This section discusses the system’s resilience to blocking and intro-
duces some initial performance values.

4.1 Unblockability

Regarding the system’s security, one of the primary objectives is to
ensure that it remains unblocked for as long as possible. Blocking
this system can essentially stem from three scenarios: I) The Google
Cloud provider being blocked in the regions where the system is
used; II) Instead of blocking all of the Google Cloud Platform’s
services, only the Pub/Sub service is blocked (e.g., by targeting the
specific Pub/Sub service domain). III) By detecting a fingerprint in
the traffic generated by our system (we leave this for future work).

We view “unblockability” as a function that takes as input a sys-
tem, service, or protocol and generates an output value. This output
represents the cost to the censor of blocking that particular system,
service, or protocol, and it heavily depends on the censor’s moti-
vations and what they are willing to sacrifice [5]. We also assume
that the censor defines a third value as the threshold of collateral
damage and population discontent that he is unwilling to exceed.
If the output value of the function exceeds this threshold, then the
system, service, or protocol cannot be blocked. The problem is that
different censors can produce varying outputs even for identical
inputs, making it challenging to generalize and estimate a system’s
overall unblockability. Thus, we must rely on a heuristic approach,
examining censors’ past actions and current censorship practices
and observing which systems remain unblocked for extended pe-
riods and which do not. Those that have not been blocked or are
widely popular in censored regions are ideal candidates to be used
in communication channels to evade censorship. The most used
cloud providers, such as Amazon AWS, Microsoft Azure, and Google
Cloud, are strong candidates due to their widespread popularity
and the significant reliance that businesses and organizations place
on their services. However, instances of their blockage exist glob-
ally. For example, Google Cloud services are inaccessible in China.
Yet, we argue that developing rendezvous protocols that might be
restricted in specific authoritarian regimes still holds some value
as long as they work in others. Having rendezvous protocols that
only work in particular regimes could benefit populations within
such regimes, ensuring a broader safety net of censorship-resistant
services. Additionally, we argue that Pub/Sub services are strong
candidates as carrier protocols due to their significant role in com-
munication models between IoT devices, Edge, and Cloud servers.
The growing trend of IoT devices across various contexts (e.g., smart
homes, retail, and industries) further strengthens the popularity of
Pub/Sub systems. We also provide examples of applications that
use, specifically, the Google Pub/Sub service in Appendix B.

4.2 Performance

We present preliminary results regarding the time it takes for a cen-
sorship evasion system, i.e., TorKameleon, to establish a connection
to a Bridge using our system. Firstly, we calculated the time it takes

30

A. Vilalonga et al.

to connect to a TorKameleon Bridge without our system. In this
scenario, a special server, also known as the Broker, facilitates the
relay of information between the Bridge and the user. They must
communicate to exchange network information, media capabili-
ties, and other configurations necessary to establish a peer-to-peer
WebRTC connection. This value serves as the baseline for our eval-
uation. Subsequently, we conducted the same test, but this time, we
used our system as an intermediary to exchange the information
needed for the connection.

A(s) B(s) Total Time (s)

1.32 -
3.26  5.23

1.32
8.49

Baseline
Our System

Table 1: Bootstrapping time comparison (seconds). A: Time
for message exchange. B: Time for subscription creation.

The test bench consisted of two machines. The first one was
located in Europe, connected to the network through a 1Gbps band-
width connection, and ran the client-side software. It had an Intel
Core 15 9300H processor with 4 cores (2.40 GHz) and 16 GB of RAM.
The Broker (both the one used in the baseline and the one from
our system) and the TorKameleon Bridge were run on a virtual
private server (VPS) in the East US region, with 1 core and 1 GiB of
RAM. We did not find the bandwidth values for the VPS used. Both
systems had Ubuntu 20.04. Between the machine in Europe and the
one in the East US, there was an average latency of 113 ms. The
results can be observed in Table 1. Each measurement presented
is the average of 10 samples. For the tests regarding our system,
we divided the time into two subcategories which together make
up the total time of bootstrapping TorKameleon: the subscription
creation time (step (1) in Figure 2) and the time it takes to exchange
the information needed for the connection (steps (2)-(8) in Figure 2).
As shown by the results, the primary bottleneck of the system in
terms of time consumption is the subscription creation part. This
delay is primarily attributed to the time required for Google Cloud
to create the new subscription resource. Additionally, the message
exchange time for our system is approximately 2 seconds longer
than the baseline, which remains within reasonable bounds.

5 CONCLUSION

This article proposes a solution for users in censored regions with
limited internet access to obtain the necessary information to estab-
lish a connection with a Bridge. Our system uses Pub/Sub services
as data carriers, enabling real-time indirect message exchange be-
tween users and a Broker, which acts as an intermediary to Bridges.

Our future work aims to extend our design to integrate various
Pub/Sub services across different cloud providers. This task involves
adapting our protocol to accommodate other Pub/Sub services and
integrating new functionalities, including broker and user authen-
tication. Additionally, we intend to evaluate the system for traffic
analysis to detect patterns (fingerprints) and assess performance
metrics, such as scalability.



Looking at the Clouds: Leveraging Pub/Sub Cloud Services for Censorship-Resistant Rendezvous Channels

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for
their constructive feedback. The authors would also like to ac-
knowledge the support provided by FCT through the PhD grant
(PRT/BD/154787/2023) and by NOVA LINCS (UIDB/04516/2020 and
UIDP/04516/2020) with the financial support of FCT, LP.

REFERENCES

[1] Yawning Angel. 2014. obfs4. https:/gitlab.com/yawning/obfs4

[2] AWS. -.

[3

[4

[10

[11

[12

[13

[14

[15

(17

[18

[19

=

fla

]

]

Amazon Web Services (AWS) - What Is Pub/Sub Messaging?
//aws.amazon.com/what-is/pub-sub-messaging/?nc1=h_Is

Diogo Barradas, Nuno Santos, Luis Rodrigues, and Vitor Nunes. 2020. Pok-
ing a Hole in the Wall: Efficient Censorship-Resistant Internet Communica-
tions by Parasitizing on WebRTC. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security (Virtual Event, USA)
(CCS ’20). Association for Computing Machinery, New York, NY, USA, 35-48.
https://doi.org/10.1145/3372297.3417874

Zachary S. Bischof, Kennedy Pitcher, Esteban Carisimo, Amanda Meng, Rafael
Bezerra Nunes, Ramakrishna Padmanabhan, Margaret E. Roberts, Alex C. Sno-
eren, and Alberto Dainotti. 2023. Destination Unreachable: Characterizing Inter-
net Outages and Shutdowns. In Proceedings of the ACM SIGCOMM 2023 Conference
(New York, NY, USA) (ACM SIGCOMM °23). Association for Computing Machin-
ery, New York, NY, USA, 608-621. https://doi.org/10.1145/3603269.3604883
Cecylia Bocovich, Arlo Breault, Xiaokang Wang, David Fifield, and Serene. 2024.
Snowflake, a censorship circumvention system using temporary WebRTC proxies.
In 33nd USENIX Security Symposium (USENIX Security 24). USENIX Association.
https://www.bamsoftware.com/papers/snowflake/snowflake.pdf

Chad Brubaker, Amir Houmansadr, and Vitaly Shmatikov. 2014. CloudTransport:
Using Cloud Storage for Censorship-Resistant Networking. In Privacy Enhancing
Technologies, Emiliano De Cristofaro and Steven J. Murdoch (Eds.). Springer
International Publishing, Cham, 1-20.

Roger Dingledine and Nick Mathewson. 2006. Design of a blocking-resistant
anonymity system. Technical Report. The Tor Project. https://svn.torproject.org/
svn/projects/design-paper/blocking.pdf

Frederick Douglas, Rorshach, Weiyang Pan, and Matthew Caesar. 2016. Salmon:
Robust Proxy Distribution for Censorship Circumvention. Privacy Enhancing
Technologies 2016, 4 (2016), 4-20. https://petsymposium.org/popets/2016/popets-
2016-0026.pdf

Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster, Nicholas Weaver, and
Vern Paxson. 2015. Examining How the Great Firewall Discovers Hidden Cir-
cumvention Servers. In Proceedings of the 2015 Internet Measurement Conference
(Tokyo, Japan) (IMC 15). Association for Computing Machinery, New York, NY,
USA, 445-458. https://doi.org/10.1145/2815675.2815690

Yuzhou Feng, Ruyu Zhai, Radu Sion, and Bogdan Carbunar. 2023. A Study of
China’s Censorship and Its Evasion Through the Lens of Online Gaming. In
32nd USENIX Security Symposium (USENIX Security 23). USENIX Association,
Anaheim, CA, 2599-2616. https://www.usenix.org/conference/usenixsecurity23/
presentation/feng

David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson. 2015.
Blocking-resistant communication through domain fronting. Privacy Enhancing
Technologies 2015, 2 (2015). https://www.icir.org/vern/papers/meek-PETS-2015.
pdf

David Fifield and Lynn Tsai. 2016. Censors’ Delay in Blocking Circumvention
Proxies. In 6th USENIX Workshop on Free and Open Communications on the Internet
(FOCI 16). USENIX Association, Austin, TX. https://www.usenix.org/conference/
foci16/workshop-program/presentation/fifield

Gabriel Figueira, Diogo Barradas, and Nuno Santos. 2022. Stegozoa: Enhancing
WebRTC Covert Channels with Video Steganography for Internet Censorship
Circumvention. In Proceedings of the 2022 ACM on Asia Conference on Computer
and Communications Security (Nagasaki, Japan) (ASIA CCS "22). Association for
Computing Machinery, New York, NY, USA, 1154-1167. https://doi.org/10.1145/
3488932.3517419

Google Cloud. -. Google Cloud IAM Service Account Overview Documentation.
https://cloud.google.com/iam/docs/service-account-overview

Google Cloud. -. Google Cloud Pub/Sub Pricing Documentation. https://cloud.
google.com/pubsub/pricing#pubsub

Google Cloud. -. Google Cloud Pub/Sub REST API Reference Documentation. https:
//cloud.google.com/pubsub/docs/reference/rest

Google Cloud. -. Google Cloud Pub/Sub RPC Reference Documentation. https:
//cloud.google.com/pubsub/docs/reference/rpc

Google Cloud. -. Google Cloud Pub/Sub Service APIs Overview Documentation.
https://cloud.google.com/pubsub/docs/reference/service_apis_overview
Google Cloud. -. Google Cloud Resource Manager Documentation: Creating and
Managing Projects. https://cloud.google.com/resource-manager/docs/creating-

https:

31

[20

[21

[22

[23

™
=)

[25

[26]

[28

[32

(33]

[35

[36]

(37]

'w
&

Free and Open Communications on the Internet 2024 (2)

managing-projects

Google Cloud. 2024. Google Cloud Pub/Sub. https://cloud.google.com/pubsub?
hl=en.

Sergei Guriev and Daniel Treisman. 2020. A theory of informational autocracy.
Journal of Public Economics 186 (2020), 104158. https://doi.org/10.1016/j.jpubeco.
2020.104158

Haifeng Huang and Nicholas Cruz. 2022. Propaganda, Presumed Influence, and
Collective Protest. Political Behavior 44, 4 (01 Dec 2022), 1789-1812. https:
//doi.org/10.1007/s11109-021-09683-0

Shuai Li and Nicholas Hopper. 2016. Mailet: Instant Social Networking un-
der Censorship. Privacy Enhancing Technologies 2016, 2 (2016), 1-18. https:
//petsymposium.org/popets/2016/popets-2016-0011.pdf

Mohsen Minaei, Pedro Moreno-Sanchez, and Aniket Kate. 2020. MoneyMorph:
Censorship Resistant Rendezvous using Permissionless Cryptocurrencies. Privacy
Enhancing Technologies 2020, 3 (2020), 404-424. https://petsymposium.org/2020/
files/papers/issue3/popets-2020-0058.pdf

Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian
Goldberg. 2012. SkypeMorph: protocol obfuscation for Tor bridges. In Proceedings
of the 2012 ACM Conference on Computer and Communications Security (Raleigh,
North Carolina, USA) (CCS ’12). Association for Computing Machinery, New
York, NY, USA, 97-108. https://doi.org/10.1145/2382196.2382210

Milad Nasr, Sadegh Farhang, Amir Houmansadr, and Jens Grossklags. 2019.
Enemy At the Gateways: Censorship-Resilient Proxy Distribution Using Game
Theory. In Network and Distributed System Security. The Internet Society. https:
//people.cs.umass.edu/~amir/papers/TorGame.pdf

Sadia Nourin, Van Tran, Xi Jiang, Kevin Bock, Nick Feamster, Nguyen Phong
Hoang, and Dave Levin. 2023. Measuring and Evading Turkmenistan’s In-
ternet Censorship: A Case Study in Large-Scale Measurements of a Low-
Penetration Country. In Proceedings of the ACM Web Conference 2023 (Austin, TX,
USA) (WWW ’23). Association for Computing Machinery, New York, NY, USA,
1969-1979. https://doi.org/10.1145/3543507.3583189

Reethika Ramesh, Ram Sundara Raman, Apurva Virkud, Alexandra Dirk-
sen, Armin Huremagic, David Fifield, Dirk Rodenburg, Rod Hynes, Doug
Madory, and Roya Ensafi. 2023. Network Responses to Russia’s Invasion of
Ukraine in 2022: A Cautionary Tale for Internet Freedom. In 32nd USENIX Se-
curity Symposium (USENIX Security 23). USENIX Association, Anaheim, CA,
2581-2598. https://www.usenix.org/conference/usenixsecurity23/presentation/
ramesh-network-responses

The Tor Project. -. Tor Bridges. https://bridges.torproject.org/

Lindsey Tulloch and Ian Goldberg. 2023. Lox: Protecting the Social Graph in
Bridge Distribution. Privacy Enhancing Technologies 2023, 1 (2023).  https:
//petsymposium.org/popets/2023/popets-2023-0029.pdf

Afonso Vilalonga, Jodo S. Resende, and Henrique Domingos. 2023. TorKameleon:
Improving Tor’s Censorship Resistance with K-anonymization and Media-based
Covert Channels. arXiv:2303.17544 [cs.CR]

Paul Vines, Samuel McKay, Jesse Jenter, and Suresh Krishnaswamy. 2024. Com-
munication Breakdown: Modularizing Application Tunneling for Signaling
Around Censorship. Privacy Enhancing Technologies 2024, 1 (2024).  https:
//www.petsymposium.org/popets/2024/popets-2024-0027.pdf

Ryan Wails, Andrew Stange, Eliana Troper, Aylin Caliskan, Roger Dingledine,
Rob Jansen, and Micah Sherr. 2022. Learning to Behave: Improving Covert
Channel Security with Behavior-Based Designs. Proceedings on Privacy Enhancing
Technologies 2022 (07 2022), 179-199. https://doi.org/10.56553/popets-2022-0068
Andrew Wang, Anthony Chang, Kieran Quan, Michael Pu, Yi Wei Zhou, and
Cecylia Bocovich. 2024. New SQS rendezvous method for Snowflake. https:
//github.com/net4people/bbs/issues/335 Accessed: 04 12, 2024.

Qiyan Wang, Zi Lin, Nikita Borisov, and Nicholas J. Hopper. 2013. rBridge:
User Reputation based Tor Bridge Distribution with Privacy Preservation. In
Network and Distributed System Security. The Internet Society. https://www-
users.cs.umn.edu/~hopper/rbridge_ndss13.pdf

Diwen Xue and Roya Ensafi. 2023. The Use of Push Notification in Censorship
Circumvention. In Free and Open Communications on the Internet. https://www.
petsymposium.org/foci/2023/foci- 2023-0009.pdf

Tarun Kumar Yadav, Akshat Sinha, Devashish Gosain, Piyush Kumar Sharma,
and Sambuddho Chakravarty. 2018. Where The Light Gets In: Analyzing Web
Censorship Mechanisms in India. In Internet Measurement Conference. ACM.
http://delivery.acm.org/10.1145/3280000/3278555/p252- Yadav.pdf

Wenxuan Zhou, Amir Houmansadr, Matthew Caesar, and Nikita Borisov. 2013.
SWEET: Serving the Web by Exploiting Email Tunnels. In Hot Topics in Privacy
Enhancing Technologies. Springer. https://petsymposium.org/2013/papers/zhou-
censorship.pdf


https://gitlab.com/yawning/obfs4
https://aws.amazon.com/what-is/pub-sub-messaging/?nc1=h_ls
https://aws.amazon.com/what-is/pub-sub-messaging/?nc1=h_ls
https://doi.org/10.1145/3372297.3417874
https://doi.org/10.1145/3603269.3604883
https://www.bamsoftware.com/papers/snowflake/snowflake.pdf
https://svn.torproject.org/svn/projects/design-paper/blocking.pdf
https://svn.torproject.org/svn/projects/design-paper/blocking.pdf
https://petsymposium.org/popets/2016/popets-2016-0026.pdf
https://petsymposium.org/popets/2016/popets-2016-0026.pdf
https://doi.org/10.1145/2815675.2815690
https://www.usenix.org/conference/usenixsecurity23/presentation/feng
https://www.usenix.org/conference/usenixsecurity23/presentation/feng
https://www.icir.org/vern/papers/meek-PETS-2015.pdf
https://www.icir.org/vern/papers/meek-PETS-2015.pdf
https://www.usenix.org/conference/foci16/workshop-program/presentation/fifield
https://www.usenix.org/conference/foci16/workshop-program/presentation/fifield
https://doi.org/10.1145/3488932.3517419
https://doi.org/10.1145/3488932.3517419
https://cloud.google.com/iam/docs/service-account-overview
https://cloud.google.com/pubsub/pricing#pubsub
https://cloud.google.com/pubsub/pricing#pubsub
https://cloud.google.com/pubsub/docs/reference/rest
https://cloud.google.com/pubsub/docs/reference/rest
https://cloud.google.com/pubsub/docs/reference/rpc
https://cloud.google.com/pubsub/docs/reference/rpc
https://cloud.google.com/pubsub/docs/reference/service_apis_overview
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/pubsub?hl=en
https://cloud.google.com/pubsub?hl=en
https://doi.org/10.1016/j.jpubeco.2020.104158
https://doi.org/10.1016/j.jpubeco.2020.104158
https://doi.org/10.1007/s11109-021-09683-0
https://doi.org/10.1007/s11109-021-09683-0
https://petsymposium.org/popets/2016/popets-2016-0011.pdf
https://petsymposium.org/popets/2016/popets-2016-0011.pdf
https://petsymposium.org/2020/files/papers/issue3/popets-2020-0058.pdf
https://petsymposium.org/2020/files/papers/issue3/popets-2020-0058.pdf
https://doi.org/10.1145/2382196.2382210
https://people.cs.umass.edu/~amir/papers/TorGame.pdf
https://people.cs.umass.edu/~amir/papers/TorGame.pdf
https://doi.org/10.1145/3543507.3583189
https://www.usenix.org/conference/usenixsecurity23/presentation/ramesh-network-responses
https://www.usenix.org/conference/usenixsecurity23/presentation/ramesh-network-responses
https://bridges.torproject.org/
https://petsymposium.org/popets/2023/popets-2023-0029.pdf
https://petsymposium.org/popets/2023/popets-2023-0029.pdf
https://arxiv.org/abs/2303.17544
https://www.petsymposium.org/popets/2024/popets-2024-0027.pdf
https://www.petsymposium.org/popets/2024/popets-2024-0027.pdf
https://doi.org/10.56553/popets-2022-0068
https://github.com/net4people/bbs/issues/335
https://github.com/net4people/bbs/issues/335
https://www-users.cs.umn.edu/~hopper/rbridge_ndss13.pdf
https://www-users.cs.umn.edu/~hopper/rbridge_ndss13.pdf
https://www.petsymposium.org/foci/2023/foci-2023-0009.pdf
https://www.petsymposium.org/foci/2023/foci-2023-0009.pdf
http://delivery.acm.org/10.1145/3280000/3278555/p252-Yadav.pdf
https://petsymposium.org/2013/papers/zhou-censorship.pdf
https://petsymposium.org/2013/papers/zhou-censorship.pdf

Free and Open Communications on the Internet 2024 (2)

A PROTOCOL AND SYSTEM DESIGN

A.1 Alternative Protocol Designs

In this section, we introduce an alternative to the designed protocol,
depicted in Figure 3. This alternative bears similarities to the origi-
nal protocol but introduces some key differences. In this version,
instead of relying on a global topic for all users, the Broker creates
specific topics and subscriptions that act as private communication
channels for each user. Therefore, the user is subscribed to their
specific topic, ensuring that only that specific user receives mes-
sages intended for them. Nevertheless, it’s worth noting that this
version has not undergone complete testing or implementation.

’ PUb/SUb | BrOker ‘
Service
T T

I 1)send(CONNECT, SID) | 1
"1 1)send(CONNECT,SID) |
—_—

3) verify_topics_created()

1
1
1
4) send(START) :
1

f 5) get_new_bridge()
i
1
k
1

6) send(HAS_BRIDGE, PK)

7) send(SYM, PK(SK))
7) send(SYM, PK(SK))

9) start_connection()

1
1
L
1
8) send(DATA, SK(INFO)) 1 8) send(DATA, SK(INFO))
1
1
1

Figure 3: Alternative protocol design for the rendezvous chan-
nel. The order of the exchanged messages is represented in
numerical order.

Both messages 2 and 3 are new compared to the regular version
of the protocol. Upon receiving the initial request to bootstrap the
system from the user, the Broker creates two new topics with names
based on the received SID (2): one for the Broker to send messages
to the user and another for the user to send messages to the Broker,
both acting as unidirectional private communication channels. It
also establishes two subscriptions, one for each topic, allowing the
user and the Broker to read from their respective channels. Using
two topics instead of just one per client ensures that both the Broker
and the user do not receive the messages they send to each other,
avoiding the scenario where both parties act as publishers and
subscribers on the same topic used as the private communication
channel. Once the Broker and the user verify that the topics and
their subscriptions have been created (3), the message exchange can
begin. The user sends a START message to the Broker (4), and the
rest of the protocol follows a similar pattern to the regular version.
In this version, the primary source of time consumption occurs
when the topics and their respective subscriptions are created for
each user’s connection, and their creation is verified (steps (2) and
(3) in Figure 3). In our testbench, the average time taken for each
topic and its respective subscription to be created is 10.81 seconds.

A. Vilalonga et al.

B GOOGLE PUB/SUB SERVICE
B.1 Service Accounts

Service accounts [14] are a special type of account typically used by
applications rather than by a person to access Google Cloud services
and make authorized API calls. Service accounts are principals,
meaning granting them access, permission, and roles in Google
Cloud resources is possible. Service accounts can be defined within
projects. Projects [19] are a way to organize resources within a
Google Cloud account and allow the management of permissions
for the Google Cloud resources existing within a project.

We create two projects: one for the BT topic and its associated
subscriptions (referred to as Project One) and another for the UT
topic and its associated subscriptions (referred to as Project Two).
Then, we create a service account for each project: Service Account
A for Project One and Service Account B for Project Two. Service
account A will have permission to create subscriptions to the BT
topic and consume messages using those subscriptions. Addition-
ally, service account A will have permission to publish messages
on the topic of Project Two, the UT topic. This service account
serves as the user account. On the other hand, service account B
will have permission to create subscriptions to the UT topic and
consume messages using those subscriptions. Additionally, service
account B will have permission to publish messages on the topic
of Project One, the BT topic. This service account serves as the
Broker account. Both accounts only have permissions for what they
require. We use two projects because having only one project for
both accounts and all resources would permit users to create sub-
scriptions in the project where the UT topic is defined, potentially
allowing them to read messages intended for Brokers.

B.2 Credentials

Below, in Listing 1, is an example template of the credentials JSON
file required for the system to interact with the Pub/Sub service.

{
"type": "service_account",
"project_id": "project_id",
"private_key_id": "PRIVATE_KEY_ID",
"private_key": "PRIVATE_KEY",
"client_email":
"project_id@appspot.gserviceaccount.com",

"client_id": "ID",

"auth_uri":
"https://accounts.google.com/o/oauth2/auth",

"token_uri":

"https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url":
"https://www.googleapis.com/oauth2/vi/certs",
"client_x509_cert_url":
"googleapis.com/robot/vi/metadata/x509/
client_email",
"universe_domain": "googleapis.com"

Listing 1: JSON Credentials File



Looking at the Clouds: Leveraging Pub/Sub Cloud Services for Censorship-Resistant Rendezvous Channels

To use our system, users need this information, as well as the
name of the UT topic, the BT topic and the project ID associated
with the UT topic.

B.3 Regions

Requests sent to the global endpoint of the Pub/Sub service from
outside the Google Cloud are routed to a nearby available region.
However, users can also send requests to one of the available Pub-
/Sub service regions using the locational Pub/Sub endpoints [18].
Storage policies can also be applied to ensure that the processing
and storage of messages occur only in the regions specified in this
policy, regardless of the origin of the publish requests. If no stor-
age policy or resource location restriction organization policy is
defined, messages can be stored and processed in any available
Google Pub/Sub region.

B.4 Pricing

The Google Pub/Sub service requires a Google Cloud account. The
account and the Pub/Sub service can be created and utilized for
free, although the Pub/Sub service is only free for message volumes
of up to 10GB per month [15].

B.5 Usecases

We present two examples of real-world applications that use the
Google Cloud Platform Pub/Sub service (both examples were taken
from the Google Cloud Pub/Sub website and showcased by Google
themselves [20]). The first example was developed by the CME
Group, which used Google Pub/Sub to provide customers with a real-
time messaging market data service. This service allows consumers
to subscribe to topics where messages and events related to market
data are published. Sky, a media and communications company,
implemented the second example, using Google Pub/Sub to transmit
diagnostic data from TV boxes (IoT devices) to their infrastructure.
Both examples illustrate the application of the Pub/Sub service in
consumer-oriented contexts.

C OTHER PUB/SUB SERVICES

We leveraged the Google Pub/Sub service for our prototype. Yet,
other cloud providers offer similar services that we intend to ex-
plore in the future, such as Amazon Simple Notification Service
(SNS) [2]. Amazon SNS only permits direct upstream connections
between user devices and Amazon SNS. In other words, any device
can publish messages, but only specific endpoints can subscribe
to topics and receive published messages. Specifically, SNS sup-
ports delivering messages to other Amazon services (e.g., Lambda
functions and Amazon SQS queues), HTTP(S) endpoints, mobile
text messaging, or email. Adapting our system to Amazon SNS will
require implementing a different method for downstream delivery
to users. Microsoft Azure also offers Pub/Sub services. However,
unlike Amazon and Google Cloud Pub/Sub services, Azure’s ser-
vices have specific domains assigned to each created resource. This
characteristic makes them easier targets for censors to block.

33

Free and Open Communications on the Internet 2024 (2)



	Abstract
	1 Introduction
	2 Background
	2.1 Problem Statement
	2.2 Rendezvous Channels

	3 System Architecture
	3.1 Protocol Design
	3.2 Threat Model and Security Considerations
	3.3 Implementation

	4 Discussion
	4.1 Unblockability
	4.2 Performance

	5 Conclusion
	Acknowledgments
	References
	A Protocol and System Design
	A.1 Alternative Protocol Designs

	B Google Pub/Sub Service
	B.1 Service Accounts
	B.2 Credentials
	B.3 Regions
	B.4 Pricing
	B.5 Usecases

	C Other Pub/Sub Services

