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Abstract

The Internet of Things (IoT) envisions a smart environment powered by connectivity and heterogeneity where ensuring reliable
services and communications across multiple industries, from financial fields to healthcare and fault detection systems, is a top
priority. In such fields, data is being collected and broadcast at high speed on a continuous and real-time scale, including IoT in
the streaming processing paradigm. Intrusion Detection Systems (IDS) rely on manually defined security policies and signatures
that fail to design a real-time solution or prevent zero-day attacks. Therefore, anomaly detection appears as a prominent solution
capable of recognizing patterns, learning from experience, and detecting abnormal behavior. However, most approaches do not
fit the urged requirements, often evaluated on deprecated datasets not representative of the working environment. As a result, our
contributions address an overview of cybersecurity threats in IoT, important recommendations for a real-time IDS, and a real-time
dataset setting to evaluate a security system covering multiple cyber threats. The dataset used to evaluate current host-based IDS
approaches is publicly available and can be used as a benchmark by the community.
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1. Introduction

In a digital world growing at an incredible rate, the IoT plays
a prominent role in our everyday lives by empowering inter-
connection and integration in physical and cyberspaces. Nowa-
days, the IoT paradigm embodies a dynamic global network
infrastructure, offering high levels of accessibility, integrity,
availability, and interoperability among heterogeneous smart
devices [1].

Although the signs of progression in IoT are undeniable, they
also represent a major challenge in privacy and security as the
number of smart devices and dependencies increase. The per-
vasive connectivity to the internet poses numerous hidden se-
curity risks, such as eavesdropping on the wireless communica-
tion channel, unauthorized access to devices, or tampering with
devices [2]. According to the statistics of AV-TEST1 institute
in Germany, there are more than a billion malicious executable
scripts known to the security community. In fact, the digital
transformation also meant the increase of cybercrime, often as-
sociated with significant financial losses for both individuals
and organizations.

In particular, cyber threats continue to evolve and target IoT
devices and communications that have been enabled by a weak
network security posture and obsolete devices. As an example,
it has been reported that 72% of healthcare systems mix IoT and
IT assets, allowing malware to spread from users’ computers to

⋆Fully documented templates are available in the elsarticle package on
CTAN.
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vulnerable IoT devices on the same network, and 41% of at-
tacks scan through network-connected devices in an attempt to
exploit known vulnerabilities2. Accordingly, to ensure reliable
services, the network should not allow unauthorized access by
verifying reliable communication methods to send and receive
authentic information and perform sensor operations, transmis-
sions, and treatments safely in real-time [3].

Cybersecurity analysis relies on vast data to predict, iden-
tify, characterize, and deal with threats. As the volume of data
and complexity increases, all human efforts are not enough to
deal with the cyber defense urgency. Recent developments in
computer data acquisition, storage, and processing fueled the
application of Machine Learning (ML) to step in and help to
detect complex patterns and trends more efficiently and faster
than humans [4]. Although smart devices can provide intelli-
gent assistance and reduce manual work, most ML solutions
count numerous incompatibilities with the IoT paradigm. From
the prerequisite of training with huge amounts of data to the se-
curity risks involved with sharing raw data in complex and com-
putational expensive frameworks, current solutions prove to be
unsuitable for a continuous and real-time infrastructure [5].

The intertwined topics demand online security solutions and
applications to build robust tools to defend systems against se-
curity threats. One of the most prominent methods - IDS - is
built to monitor systems and detect anomalies or privacy viola-
tions [6]. These systems, devices, or software are responsible
for preventing breaches of security incidents, monitoring, and
reacting to any unauthorized access that causes damage to the

2https://iotbusinessnews.com/download/white-papers/UNIT42-IoT-
Threat-Report.pdf)
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stored information, the information system, or the network [7].
Although the necessity to build robust tools to defend net-

works and systems has been highly documented, current on-
going solutions prove ineffective against new threats and zero-
days. The most common detection technique consists of a pre-
built intrusion pattern database to classify events. Despite ob-
taining low false alarm rates for well-known attacks, these sys-
tems cannot detect unknown threats as their signatures have not
yet been created. On the other hand, in anomaly detection, de-
cisions are made based on normal behavior or features. In this
sense, a stream that significantly deviates from the expected
pattern will be considered an intrusion. Although this solution
offers the possibility to identify zero-day attacks, it still obtains
high false alarm rates, rendering the intrusion system ineffec-
tive [8].

Current intrusion detection solutions that have been pre-
sented fail to design a system that matches all the requirements
inherent in a real-world environment. Particularly, anomaly de-
tection in cybersecurity is associated with an imbalanced and
dynamic domain where the least-expected outcome is highly
relevant, potentially undermining its performance and compro-
mising the security system [9]. Additionally, real-time con-
straints of security IoT environments require efficient compu-
tational approaches to enable efficient solutions. Current solu-
tions often focus on accuracy without considering the time de-
lay between training, prediction, and the active response [10].

As the amount of data generated in real-world applications
increases, deep human expertise is required to validate the en-
tries and ensure reliable services [11]. Furthermore, current
tools are often based on outdated and static datasets that can-
not reflect the reality of modern threats or the ability to under-
stand the evolution of concepts [6]. These shortcomings lead
to a preference for signature-based systems over anomaly de-
tection and, consequently, the IDS’s vulnerability to new and
adversarial attacks.

Accordingly, motivated by the incompleteness of currently
available solutions in one of the most critical topics in the re-
search field, the urgency to build an anomaly detection sys-
tem that offers a real-time effective and efficient security sys-
tem in IoT is the core issue of this work. Furthermore, with
the increasing number of IoT applications, this work offers
an overview of the most relevant concepts of an IDS, from
the background concepts to a representative real-time dataset.
Therefore, this paper focuses mainly on three research ques-
tions outlining our contributions:
RQ1: What are the main requirements of intrusion detection in
IoT, from its paradigm to security challenges?
RQ2: How to design a complete intrusion solution suitable for
an IoT cyber domain?
RQ3: How can a HIDS dataset represent a continuously evolv-
ing IoT ecosystem?

In summary, the main contributions offered by this work can
be stated as:
• An overview of the most essential concepts to help iden-

tify points of failure and facilitate a risk assessment for
a particular infrastructure. This contribution shapes the
ecosystem and formulates RQ1 by defining the environ-

Figure 1: Scope and organization of this work.

ment, from its challenges, main requirements, and data
processing paradigm to the IDS taxonomy and classifica-
tion of prominent cyber threats, according to the IoT layer,
class vector, or compromised security principle.

• A set of guidelines and considerations dictated by the en-
vironment and fundamental requirements to design a real-
time IDS in IoT, followed by a review of recent IDS pro-
posals, delineates RQ2 and attests that there is not yet an
efficient solution that meets all the directives.

• An evaluation setup configuration designed to test real-
time and streaming systems using reported vulnerabilities
as anomalous traffic. RQ3 is fulfilled, and a publicly avail-
able dataset containing cyber IoT attacks, ready to be ex-
ploited on multiple platforms, is proposed.

• Additionally, an open-source HIDS evaluation, using our
proposed setting and attesting performance and detection
methodology as a flexible and robust approach to different
threat vectors and zero-day.

Following the stated motivation and contributions, Figure 1
illustrates the organization, scope, and interactions of this work,
starting by pointing out the inherent characteristics imposed by
an intrusion system in IoT. As the problem dimensions and the
operating conditions define the working environment, this first
topic formulates RQ1 and our first contribution. After analyz-
ing identical reviews on IDS systems in IoT, this review defines
an ideal IDS in IoT by delineating desired properties to imple-
ment a practical solution and to build a HIDS dataset honor-
ing real applications processes and meeting RQ2 and second
and third contributions. Finally, using an IoT use case to con-
tinue reviewing open-source HIDS, RQ2 and RQ3 are com-
pleted by testing and discussing available intrusion systems.
Therefore, this work distinguishes from similar reviews that ne-
glect streaming characteristics or cyber threats and adversarial
attacks by stating and describing the problem dimension con-
sidering both anomaly detection and cybersecurity fields, de-
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tailing an ideal IDS, and suggesting a HIDS dataset using IoT
vulnerabilities for a reliable evaluation scheme.

Concisely, this paper is structured as follows: Section 2 con-
tains the main requirements, concepts, IDS taxonomy, and IoT
threats taxonomy according to their procedures and compro-
mised security principles leading to our first research ques-
tion; Section 3 reviews similar studies comparing them to our
work; Section 4 follows some crucial directions to build a reli-
able solution and discusses current intrusion systems that have
been proposed; Section 5 details an open-source and real-time
dataset and evaluation scheme for an IoT use case scenario, re-
porting the architecture and management services to attest our
convictions; Section 6 and Section 7 close this paper by ad-
vancing future research challenges, significant discussions, and
important topics to consider for a future research direction to-
wards a real-time and robust security system.

2. Contextual Information

Discussing the background by describing the main concepts
and requirements of an intrusion detection task in IoT, consider-
ing its characteristics and goals, is crucial to building a realistic
solution that fits the environment’s specifications and outlines
the specifications to achieve. Figure 2 depicts the buzzwords
for each concept as IoT domain, streaming processing, and in-
trusion detection task as vital subjects to consider for a realistic
and practical cybersecurity system.

The first security concept specifies the IoT environment,
from industry, finance, manufacturing, healthcare, our cities,
and homes, enabling automation, cutting waste, and improving
monitoring abilities. This environment incorporates heteroge-
neous devices, producing highly imbalanced and imprecise vast
amounts of data portrayed as ambiguous and imperfect [12].
Due to the IoT characteristics, the data collected have a dis-
tributed and real-time nature, high volume, fast velocity, and va-
riety. It demands cost-effective processing in order to be able to
deliver enhanced insights and decision-making. Its high speed
and possible low quality and interpretation have been proving
to be the challenges posed by IoT since they compromise the
models’ consistency and reliability [13].

The second topic to address is the task of monitoring sys-
tems, where the data flow can be seen as a continuous stream of
inputs, denoting data flowing in and out continuously. The char-
acteristics of a real-time and continuously evolving paradigm
introduce the second security concept presented in Figure 2.
Streaming data processing is beneficial in most everyday sce-
narios where new and dynamic data is continually generated,
allowing continuous monitoring of real-time data. In this sense,
the streaming resource limitations meet the IoT directives [14].
Moreover, a streaming environment like the one found in IoT
applications must consider the possibility of concept drift where
data characteristics change over time. In this sense, security so-
lutions need to be updated to detect dynamic changes in a fast
and accurate way as the underlying assumptions used to val-
idate the system can be affected, reducing its relevance with
time [15].

Finally, an intrusion system depicted as a detection problem
belongs to a dynamic and real-time anomaly detection scenario
designed to identify possible attacks and proper responses [16],
the number of threats can be considerably lower than the ordi-
nary events, resulting in an imbalanced setting. Additionally,
when dealing with cyber threats, an attacker could target the
intrusion system, manipulating its predictions and responses,
which adds the adversarial prospect to the security contextual-
ization presented in Figure 2.

Security Context

IoT Streaming Detection

Heterogeneous

Volume

Limited re-
sources

Continuous

Real-time

Concept Drift

Imbalanced

Adversarial
domain

Figure 2: Security domain contextualization

2.1. Intrusion Detection Systems

Intrusion detection systems are common cybersecurity mech-
anisms designed to gather, process, and analyze the information
derived from computer hosts or networks to identify malicious
activities such as security breaches, including attacks arising
inside or outside the infrastructure [17].

According to the information source and examined activity,
the most common solutions are host-based intrusion detection
systems (HIDS) and network-based intrusion detection systems
(NIDS). Based on the types of analyzed data, another classifi-
cation appears by employing multiple specialized detectors at
different layers (network, kernel, and application) for a hybrid-
based intrusion detection system that combines previous meth-
ods and other security mechanisms for a more practical detec-
tion of cyber attacks [18].

The host-based systems monitor system activity, such as files
modifications or memory usage. Internal monitoring, which re-
lies heavily on audit trails and system logs, determines if a sys-
tem has been compromised. This approach runs on individual
hosts monitoring the device and detecting improper use of the
available resources. Popular examples of HIDS are OSSEC [19]
or Tripwire [20] responsible for log analysis and file checking,
respectively. On the other hand, network-based systems focus
on monitoring network activity, communications, and audit-
ing packet information to protect a system from network-based
threats by searching inbound packets for suspicious behavior.
This approach often operates under promiscuous mode by inter-
secting and reading packets without exposing them to potential
threats. Two of the most popular NIDS applied in cybersecu-
rity are Snort [21] and Suricata [22]. The first option provides
real-time intrusion detection and prevention, as well as monitor-
ing network security. Suricata is a modern alternative to Snort
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with multi-threading capabilities and multiple model statistical
anomaly detection [23].

On a comparative view, whereas a NIDS is mostly cen-
trally managed in infrastructures with different devices, HIDS
is a machine-oriented and distributed protection system. Al-
though HIDS can exhaust many resources, increase time and
space complexities, and have a hard time spreading cross-
platform interoperability, this approach can still be practical if
the host is connected to different networks. Despite NIDS be-
ing operating-system independent, this solution fails to handle
high-speed networks efficiently, and it cannot scan the content
of the network traffic if it is encrypted [24]. Furthermore, the
NIDS solution is specific to network threats based on packet
information, neglecting the interactions with the rest of the net-
work, making it vulnerable to adversarial threats.

Although hybrid-based solutions can add the advantages of
both methods for a more effective solution, their efficiency in
handling the summarization of real-time data streams is com-
promised as the infrastructure evolves complex.

As these security mechanisms aim to spot cyber threats, the
attack detection method adopted by an IDS is a widely covered
topic in the literature. Depending on their approach, signature,
anomaly, or hybrid detection methods are the most common
techniques.

In signature-based detection, network traffic or system-level
actions are compared against a well-known collection of previ-
ous attack signatures such as bit patterns, keywords, known ma-
licious instruction sequences, and system vulnerabilities [25].
This approach efficiently identifies old and analyzed attacks but
fails to detect zero-day attacks. For example, if the attack goal
is to exploit a particular buffer overflow, the IDS can use pat-
tern matching to look for particular strings. Due to its architec-
ture, this method implies collecting and maintaining rules on a
database. As a result, these methods only score low false alarm
rates if the signature for a particular attack is already available.
Some researchers classify this methodology as misuse-based
and, depending on if the rules reflect the abnormal or expected
behavior, separate into two more concepts - signature or spec-
ification - respectively [26]. Specification-based appeared as
a solution to detect zero-day while keeping a low false alarm
rate [27]. However, this alternative shares the same disadvan-
tages of maintaining the updated standard pattern and being
vulnerable to adversarial attacks that impersonate the expected
behavior.

In anomaly-based, a model is built from a previous network
or system activity data based on the assumption that any attack,
interpreted as an anomaly, will have a different dynamic, flag-
ging any discrepancies as suspicious. Although this technique
excels at detecting new attacks, it requires periodic updates as
the ongoing distribution is not static. Although anomaly-based
detection, augmented with data mining techniques, can help
to identify new exploits with powerful insights, such methods
and their training data are vulnerable to a variety of security
threats [28]. Although the accuracy of these methods against
zero-days is better when compared to signature-based, the false
alarm rate is often higher as the boundary between the expected
and anomaly behavior can be difficult to define [6, 8, 29].

As a result, a new approach has been documented as an al-
ternative to improve misuse-based by combining the attributes
of both strategies and accumulating knowledge about specific
attacks or system vulnerabilities. In hybrid-based methods, of-
ten reinforced with domain experts, the disadvantages of one
method are mitigated by the strengths, increasing performance
and facilitating preventive or corrective actions while also intro-
ducing a delay in the validation. These topics may compromise
the real-time response required by an effective and efficient IDS
in IoT [26].

According to the designed IDS architecture deployment
structure, standalone and collaborative schemes are commonly
discussed topics where the former depends on traffic patterns
and enables more continuous and straightforward tracking of
data within the infrastructure, without depending on additional
domain or user information [30]. On the other hand, the lat-
ter enables an IDS node to exchange required information with
other IDS nodes providing context and keeping a broader look
at the network. While collaborative approaches can reduce the
unnecessary network usage of equally assigned tasks, these so-
lutions assume that all peers are reliable. Therefore, this al-
ternative is vulnerable to insider attacks when a node in the
network is corrupted [31] or to privacy policy violations when
the user data is shared [5]. In this sense, it is often seen col-
laborative options adopting trust mechanisms to help mitigate
insider attacks by assigning node reputations and robustness to
the security system [32]. According to its communication ar-
chitecture, collaborative IDS can be categorized into central-
ized, decentralized, and distributed. In the first setting, there is
a central analysis unit applying alert correlation algorithms on
received alerts or detection algorithms on traffic data. On a de-
centralized approach, the preprocessing and correlation of the
monitored data is employed through the hierarchy until it con-
verges to a central unit, reducing unnecessary resource usage.
Finally, in distributed solutions, all monitors are analysis units
where all tasks are equally assigned [33].

Table 1 summarizes the taxonomy of an IDS based on the
information source, detection method, and primary architecture
schemes, as well as the main advantages and disadvantages dis-
cussed early on.

2.2. Anomaly Detection
In 1980, Hawkins [34] described an anomaly as an ob-

servation which “deviates so much from other observations
as to arouse suspicions that it was generated by a different
mechanism.” The importance of anomaly detection arises as
many anomalies represent essential, prominent, and often crit-
ical information in a wide variety of applications. As com-
puter systems and networks become more complex and exposed
to vulnerabilities and sophisticated attacks, anomaly detection
emerges as a fundamental measure of security [35].

Thereby, intrusion detection can be considered a subproblem
of anomaly detection, which endeavors to determine and con-
trol abnormal incoming events [36]. This domain can provide
meaningful solutions by tracking relevant hidden patterns im-
perative in identifying intrusions. Given the ultimate goal of de-
tection process automation, the main objectives of monitoring
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Table 1: IDS taxonomy and main advantages and disadvantages

Advantages Disadvantages
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Network
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Independent environ-
ment

Protection off LAN
Limited visibility in-
side the system

Host
Detect insider threats
System monitoriza-
tion

Host resource re-
quirements
Compromised with
the host

Hybrid Interoperability Complexity

D
et
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ti

on
m

et
ho

d Signature Low false alarms
Simple design

Frequent updates
Unable to detect
zero-days

Anomaly
Detects zero-days
Creates new signa-
tures

High false alarms
Hard to define nor-
mal behavior

Hybrid Detects zero-days Efficiency

A
rc

hi
te

c-
tu

re

Standalone Simplicity
Continuous flow Lack of context

Collabora-
tive

Sharing data
Robustness

Complexity
Insider threats

events are to ensure data protection and implement lightweight,
deployable, scalable, and resilient systems to unknown threats
without requiring hardware updates or prior knowledge of the
anomaly detection method [37].

Anomaly approaches rely on behavior analysis by observ-
ing a sequence of events to define standard patterns. However,
it is a misconception to consider anomaly detection as behav-
ior analysis since signature-based methods also apply behavior
evaluation [38]. Due to its ability to recognize any deviation
from the usual activities, this approach can detect novel attacks
and provide a customized model for the typical operations, low-
ering the possibility of an attacker disguising its movements.

Given the requirements imposed by a security system ap-
plied in IoT, the data collected, from network flow data and
sensors data to host performance metrics or system logs, have
a distributed and real-time nature. This paradigm, which por-
trays real-world data as a continuous stream, drives current
approaches to be dynamic and to handle massive data analy-
sis without consuming substantial resources of computational
power and memory [39].

In real applications, the underlying dynamic is never static.
Our opinions and reactions evolve, introducing concept drift
as new knowledge of real-time applications. Hence, the se-
curity system needs to be updated in order to detect dynamic
changes in a fast and accurate way [40]. Concept drift can af-
fect the decision boundaries decreasing performance with time.
Therefore, concept drift methods should be integrated into ev-
ery anomaly detection solution to cope with possible changes
that can incorrectly flag anomalies and increase the false alarm
rate. The first challenge of drift detection is its multiple types,
including gradual, sudden, and recurring drifts. The second
challenge includes IoT systems factors such as system updates,

IoT device replacement, and abnormal network events [41].
Learning-based methods work under a closed and static as-
sumption, failing to include organic behavior and malicious
mutations introduced by attackers [42]. Although many re-
search works primarily focus on static models that require peri-
odic training based on its performance, some solutions propose
time window-based methods to monitor statistical differences
between windows [43, 44], implement forgetting factors to fade
old samples’ importance [45], and build online streaming mod-
els to readjust as a new instance appears [46].

Given the distribution of stream events in security applica-
tions, anomaly detection adds the imbalanced data problem as a
core concept. The class-imbalance problem arises when the re-
currence of an event is much less frequent than often occurring
events. Rare events are difficult to detect because of their in-
frequency and casualness. However, misclassifying rare events
can result in high costs. In cybersecurity, an anomalous entry
can be infrequent compared to the thousands of network traf-
fic events a system is processing. However, failing to identify a
cyber attack could compromise the infrastructure and resources,
resulting in incalculable damages [47]. Recent research works
focus on evaluating their proposed methods on datasets that of-
fer some attack coverage and an attack ratio on the order of
dozens to tackle the imbalanced proportion [48, 49, 50]. Never-
theless, especially in a real-world IoT environment, where the
percentage of anomalous events can be even lower, such ap-
proaches are not realistic enough.

ML has been a prevailing research field in various intrusion
or fraud detection applications. In an imbalanced scenario, the
use of any potential biased measures to average the system’s
performance is discouraged. The conventional way of maxi-
mizing overall performance will often fail to learn useful in-
sights from rare events due to the dominating effect of the ma-
jority class. A solution to balance the number of samples is
to remove some of the majority class or add anomaly samples
by replicating or artificially generating more cyber attacks. In
fact, network traffic targeting computational resources, known
as honeypots, designed to lure hackers, can contribute with
anomalous data similar to the one that is being monitored [51].
As the dynamic generated in honeypots can be different from
an IoT environment-designed device, a more realistic solution
would be to self-inflict cyber threats to generate more samples
in a controlled environment. In IoT, such procedures might lead
to unrepresentative and unrealistic models [52].

ML has been formulated as an effective solution to many IDS
problems by extracting useful patterns and improving perfor-
mance. However, most of the proposed ML methods discussed
in the literature and throughout this work do not implement
computationally light approaches to enable fast prediction. De-
spite acknowledging velocity and variety, most solutions still
focus on developing parallel implementations [53], big data
processing paradigms [54], and interpolate between nodes and
cloud servers updated regularly [44]. Furthermore, when gath-
ering data from sensors with different sample frequencies and
spatial and temporal contexts, IoT data presents high dimen-
sionality, increasing data complexity and compromising pro-
cessing times and performance [55, 56]. In this sense, relevant
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topics must be considered when designing an anomaly-based
model. From concept drift and imbalanced settings to real-time,
statistical summaries, and online solutions, the computational
load and impact on the feasibility in real-world systems should
be a top priority [10].

2.3. Cybersecurity threats in IoT
The IoT ecosystem is considered an attractive target due to

its interdependence and interactions between devices, making it
possible to attack surrounding components to access the target.
The diversity and constrained characteristics, accommodating
different applications and scenarios, almost unique for each
task, also affect the system’s security. These factors require
very specific security designs, which become less stable as the
devices become more lightweight and small [57]. In summary,
IoT systems function in more dangerous and heterogeneous en-
vironments with limited resources, fewer security guards and a
large attack surface.

Network and systems’ protection requires understanding the
common causes, procedures, and protection methods of a data
breach where the interaction with domain experts can indicate
and interpret potential points of failure and hidden relations be-
tween components induced by cyber threats [58]. Therefore,
with a thorough study on the cybersecurity field and risk assess-
ment focusing on information assets, security solutions become
more proactive and robust against subsequent attacks [59].

Accordingly, security architecture must honor principles
such as confidentiality, integrity, and availability to ensure re-
liable services. These fundamental measures protect data from
being exposed from unauthorized access, protect information’s
accuracy and completeness from unauthorized alteration, and
ensure that the system is available to all users, respectively [60].
In this sense, the network should ensure reliable communi-
cation to send and receive authentic information and perform
sensor operations, transmissions, and treatments safely in real-
time [61].

Cyber attacks correspond to a type of offensive action that
intends to intercept, steal, alter, or destroy data or information
systems, compromising computer information systems, infras-
tructures, computer networks, or devices. According to the at-
tacker’s intentions, it is possible to distinguish two types of at-
tacks - active and passive. The first type represents the attacks
that intentionally disrupt the system, alter system resources, or
affect its operations. It involves masquerading when an entity
pretends to be another, modifying messages, or overloading the
system. Passive attacks attempt to learn or use information from
the system but do not affect system resources. These attacks ap-
pear like eavesdropping on or monitoring of transmission aim-
ing to obtain information transmitted in the network [62]. In
this sense, active attacks compromise integrity and availability,
while passive attacks endanger confidentiality.

Passive attacks like eavesdropping or monitoring, which do
not have a break or evade feature, will not have a particular
impact on the system’s standard expression, suggesting a diffi-
culty to host-based systems. However, some attacks, like SQL-
injection, where its ultimate goal is to expose or alter informa-
tion in a database, cannot be considered active or passive until

their true purpose is exposed [63]. Under these circumstances,
it is expected that the basic requirements, such as secure com-
munications, are guaranteed to diminish the efficiency of pas-
sive attacks.

Table 2 classifies the IoT attacks based on the class vector,
compromised security principles, and hardware vs. software
procedures that describe the scope of the most popular threats.
The IoT architecture is organized based on the scoped abstrac-
tion level and the performed duties [64]. Each row reporting
common IoT cyber threats in smart applications is described
according to the designed target layer procedure, the methodol-
ogy attack vector, and the compromised principle of common
practices.

Table 2: IoT threats taxonomy
Procedure Vector Principles
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Fault Injec-
tion [65] ✓ ✓ ✓

Sinkhole [66] ✓ ✓ ✓

Jamming [67] ✓ ✓ ✓

Sleep depri-
vation [68] ✓ ✓ ✓

MitM [69] ✓ ✓ ✓ ✓

Phising [70] ✓ ✓ ✓

Sybil [71] ✓ ✓ ✓

XSS [72] ✓ ✓ ✓ ✓

XXE [72] ✓ ✓ ✓ ✓

RCE [73] ✓ ✓ ✓ ✓

SQL-
injection [63] ✓ ✓ ✓

PE [73] ✓ ✓

Crypa-
nalysis [74] ✓ ✓ ✓

Initially, based on the chosen procedure to attack the IoT
architecture, cyber threats can be categorized into physical or
software attacks depending on if the target the hardware struc-
ture or the preferred strategy is to perform an attack by using
a virus, worms, spyware, or adware [75]. Therefore, physi-
cal attacks target the perception layer responsible for collect-
ing information and performing different measurements such
as temperature or humidity through sensors and actuators. This
layer is particularly affected due to its physical device expo-
sure, resource-constrained devices, technological heterogene-
ity, and distributed architecture that hinders the authentication
process [76]. Among its threats, the common approaches can
be distinguished as injection and spoofing attacks where vulner-
abilities are exploited by injecting input into the infrastructure,
such as fault injection, or by impersonating and falsifying data
and nodes, such as sinkhole attacks [77]. These alternatives are
a physical attack on the data and behavior of the circuit, stealing
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private data and compromising the infrastructure [65] or guid-
ing the network traffic towards malicious nodes, compromising
the integrity principle [66], respectively. In this category, de-
pending on if the availability of the system is compromised by
making it inaccessible to others, the attack vector is classified
as a jamming attack, which tries to disrupt the communication
by decreasing performance, ending up in sleep deprivation or
Denial of Service (DoS), jeopardizing availability in the infras-
tructure [67]. DoS is a very common vector in network attacks
in which the perpetrator tries to make the resources unavail-
able, typically by flooding and overloading the system [68]. On
the other hand, another strategy is to intercept information by
eavesdropping, such as Man in the Middle (MitM), where the
attacker secretly relays and possibly alters the communications
between two parties. In this sense, this attack compromises both
confidentiality and integrity principles [69].

The network and application layers are responsible for the
communication between devices and processing information
and different tasks, respectively. Given the heterogeneity of the
network and large users accessibility and potential critical ap-
plications it has access to, these layers face routing, transit, and
data leakage attacks and vulnerabilities [76]. In these layers,
which belong to a more software vector, the information or the
communications between devices are the most valuable asset.
Therefore, the common attack vector seeks to obtain access to a
system, analyze side-channel interactions using a passive strat-
egy, or disrupt the system [75]. In this category, it is possible
to encounter spoofing attack impersonating reliable sources or
social engineering attacks that aims to steal confidential data
through human interactions, compromising confidentiality fun-
damentals. In this sense, Phishing and Sybil attacks [70, 71]
are common threats that impersonate a reliable source or node
to obtain information from a target, decode, and manipulate un-
encrypted packets, targeting trust and secure connections as de-
scribed in Bluetooth impersonation attacks [78]. Similarly to
physical attacks, in the hardware layer, we can find injection
vectors, malicious inputs executed as a program in websites or
queries, such as cross-site scripting (XSS) or SQL-injection, re-
spectively. Moreover, XML external entity injection (XXE) is a
web security vulnerability that interferes with the XML data, al-
lowing an attacker to view files on the server and connect with
external systems interacting with it. This vector can lead to
a confidentiality leak by accessing unauthorized files, proving
that most approaches are not isolated, and their consequences
can escalate and compromise different security principles [72].
Another popular method exploits vulnerabilities in systems or
networks to get privileged access or bypass access control, com-
promising the confidentiality principle. In this category, Privi-
leged Escalation (PE) and Remote Code Execution (RCE) are
application-layer threats that aim to control the system by ex-
ploiting design flaws to access resources that should be unavail-
able or to execute malicious code on a remote machine and take
complete control of an affected system [73]. On the other hand,
in this setting, despite not compromising the availability of the
infrastructure, it is still important to mention encryption attacks
that aim to uncover information about the encryption technique
used and private keys. As a result, attacks such as MitM and

cryptanalysis are regular approaches [74].
As evidence, all threats, even with different assumptions and

principles, have the same target and purpose. They either aim
to control the devices or steal the information collected in the
perception layer. Looking at the infrastructure, the attacks in-
fluence the system itself. Hence, regardless of the assumption
or the target layer, the system is expected to reflect the imprint
caused by the attack, internal or external, as a direct or indirect
consequence.

In order to facilitate the communications between users and
manufacturers, the report of updated vulnerabilities using pub-
lic lists maintained by institutions and financed by governments
can be used to disclose computer security flaws publicly. An
example of these lists is the Common Vulnerabilities and Ex-
posures (CVE), a database that provides an identification num-
ber, a description, and at least one public reference to a security
breach.

3. Comparative review on Intrusion Detection Systems in
IoT

As IoT embodies a dynamic global network infrastructure
where the number of vulnerabilities and attack vectors grow
day by day, threat detection has been a highly documented topic
over the past few years as it is a shared concern among different
areas [1].

From information sources, architecture debate, detection
techniques, and data collection challenges, it is difficult to mon-
itor real-time attacks as they can embody different infrastruc-
tures, locations, and tasks. Although most literature surveys
define the IoT environment, security issues and attack taxon-
omy, when anomaly-based solutions are taken into considera-
tion, some inbred background concepts regarding real-time na-
ture, concept drift, and properties are still neglected, only fo-
cusing on increasing performance. Considering the background
concepts, from the domain characteristics to the anomaly and
cybersecurity taxonomies, as well as the validation approaches,
often disregarded, Table 3 summarizes the essential topics an
intrusion defense approach must cover to design an effective
and practical system in real applications. As such, similar re-
views were analyzed according to the streaming characteristics,
anomaly detection, IoT and cybersecurity taxonomies, analyzed
datasets, and validation criteria, distinguishing our work from
the equivalent literature.

Sicato et al. [79] touches on relevant aspects of security is-
sues, vulnerabilities, and attack surfaces in IoT. It provides
an overview of IDS in IoT, mentioning deployment strategies,
detection techniques, and data source methods. Similar to
other surveys on intrusion detection in IoT, the taxonomy at-
tacks have been discussed according to the 3-layer IoT archi-
tecture, detailing specific attacks and security principles that
come with IoT issues. Furthermore, this work proposed a dis-
tributed software-based IDS, which allows a dynamic, evolving
concept in the design and management of optimized network
resources. Despite showing special concerns about complex-
ity in lightweight IoT devices and listing security challenges
in discovering realistic attack models, poor protection methods,
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Table 3: Related work comparisons
Streaming charac-
teristics

Anomaly Detection
taxonomy

IoT and Cybersecurity
taxonomy

Analyzed
datasets

Validation
criteria

Sicato et
al. [79]

Real-world
Dynamic
heterogeneity

-

IDS taxonomy (detection
method, architecture, vali-
dation)
IoT 3-layer taxonomy
Privacy concerns
Security issues
Security threats

Experimented
on NLS KDD
dataset

Effectiveness

Aravamudhan
et al. [30]

Real-time
Dynamic
Limited resources
Heterogeneity

-
IDS taxonomy (infor-
mation source, detection
method, validation)

-
Effectiveness
Efficiency

Liu et al. [80] Real-time
Scalable

Feature selection
Rule learning
Classification
Clustering
Hidden Markov model
Neural networks

IDS taxonomy (infor-
mation source, detection
method), Collaborative

Overview HIDS
datasets
Dataset cus-
tomization

Effectiveness
Efficiency

Khraisat et
al. [81]

Real-time
Dynamic

Supervised
Unsupervised
Reinforcement learn-
ing
Deep learning

IDS taxonomy (detection
method, architecture, vali-
dation)
IoT 3-layer taxonomy
Privacy concerns

Data representa-
tive of the work-
ing environment

Effectiveness

Adnan et
al. [10]

Real-time
Dynamic
Concept drift

Concept drift
High dimensional
aware ML
Computational effi-
cient ML

IDS taxonomy (detection
method)
Anomaly-based IDS
(knowledge, statistical,
ML)

Review well-
known datasets

Effectiveness
Efficiency

This work

Real-time
Dynamic
Concept drift
Heterogeneity
Continuous
Imbalanced

Concept drift
Computational effi-
cient ML

IDS taxonomy (infor-
mation source, detection
method, architecture)
IoT 3-layer security issues
and threats
Privacy

Customizable
real-time dataset

Effectiveness
Efficiency

trust challenges, privacy, and malicious adversarial threats, this
work fails to mention anomaly detection methods to cope with
intrusion threats, imbalanced nature, concept drift properties or
validation concerns about real-time demands other than perfor-
mance.

Aravamudhan et al. [30] focuses on describing IDS taxon-
omy characterized based on deployment architecture, informa-
tion source, and detection method. It gathers various literature
evidence on demand for intrusion detection systems, analyzing
the drawbacks in current solutions. This work discusses the
IoT ecosystem, reporting important inherent challenges, such
as limited resources, multi-level attacks, difficult device protec-
tion, and heterogeneity data collection. Furthermore, this sur-
vey points out the dynamic and real-time nature, bearing highly
efficient and scalability approaches with real-time, fast, and ac-
curate responses. Despite the obvious concern regarding the re-
quirements imposed by the IoT network, this work misses an at-
tack taxonomy according to security challenges and principles
compromised by a network exposed to different attack vectors
and vulnerabilities.

Liu et al. [80] provides a thorough study, reviewing the de-
velopment efforts for system-call-based HIDS and describing
trends based on reduction of the false positive rate, improve-

ment of detection efficiency, and enhancement of collaborative
security. This work also offers an overview of current HIDS
datasets, detection methods, and future research trends, point-
ing out detection efficiency, the importance of datasets repre-
senting real-world and contemporary systems, and processing
techniques to handle known and unknown intrusions. Addition-
ally, this survey supports dataset customization to represent in-
trusion methods, summarizing into tables for system call traces
and dataset generation security tools, as well as discussing the
application of system call and cloud-based HIDS on embedded
systems. Although this work endorses enhancing collaborative
security and constructing a real-time and scalable framework, it
still fails to mention the imbalanced nature or concept drift that
needs to be accounted for in a dynamic stream.

Khraisat et al. [81] discussed IoT techniques, deployment
strategies, problems related to datasets, and validation of secu-
rity systems, contextualized with a use case scenario in ICS (In-
dustrial Control Systems). IDS solutions are also classified ac-
cording to their placement (distributed, hybrid, or centered), de-
tection method, and validation techniques. This work presents
a list of major causes of IoT as a malware target and defines
an IoT attack taxonomy based on the common 3-layer architec-
ture. Moreover, security in IoT is a major concern where pri-
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vacy, compromised communication protocols, and data collec-
tion processes representative of the working environment play
an important role. However, despite providing a specific sec-
tion about ML methodologies and briefly referring to IoT data
as voluminous and varied, the streaming anomaly scenario, im-
balanced and concept drift nature, as well as memory and time
complexities were not an obvious concern.

Adnan et al. [10] contributes with a review article tackling
three of the most IDS problems in a streaming IoT environment.
This work emphasizes the evolving characteristics of a dynamic
real-world system sustaining that an IDS must account for the
concept drift nature of IoT data, high dimensionality particu-
larly challenging in streamed data due to the inability to store or
process continuous flows, and computational efficiency of ML
methods interfering on the feasibility in IoT ecosystems. More-
over, this survey provides a taxonomy of IDS systems organiz-
ing the main concepts into anomaly, signature, and specifica-
tion, only considering intrusion systems as computer network
security monitoring and surveillance. Despite discussing im-
portant concepts such as the non-stationary nature of IoT data
and briefly referring to the imbalanced distribution problem in
anomaly detection, this work does not mention the outdated and
unrealistic properties of well-known datasets lacking volume,
variety, and veracity. In fact, this survey fails to provide a solid
cyber background on IoT taxonomy and adversarial threats.

Concerning these recent surveys, our approach starts by
defining the background concepts regarding anomaly detection
in IoT, collecting data from different devices across a vast net-
work, and listing IoT data in a streaming, dynamic, and real-
time nature, connecting anomaly detection and cybersecurity
fields. To the best of our knowledge, this is the first review
that presents some guidelines to design an anomaly-based se-
curity system and a real-time dataset and validation set, which
are used to evaluate familiar tools in a smart case application.
As in other approaches, our work provides a security threat tax-
onomy based on the IoT architecture and the security principles
and issues an IoT network is exposed to.

4. Building an Host-based Intrusion Detection System for
IoT

In IoT, HIDS solutions distribute the load when monitoring
available hosts on large networks, assigning scalability to the
infrastructure. Although these solutions are highly dependent
on the operating system and do not have access to the network
traffic, host-based approaches should reflect the interactions be-
tween the network input and the responsive device, making
these systems a mirror and the ultimate goal of the exploited
threats. Given the location of a HIDS and the ability to detect
indications of external and internal attacks on the system, this
solution offers the possibility of being robust to broader vectors
of cyber threats and of reducing evasion adversarial threats [82].
Furthermore, as supported by Liu et al. [80], research works
have shown that modeling system call arguments and return
values together provide an unsupervised system, enhance the
detection performance, and decrease the false-alarm rate.

4.1. Desired Properties

This section will suggest some considerations to develop
an effective, robust, and reliable anomaly detection security
system. Based on the fundamental concepts introduced in the
previous sections, the following topics are the ones that must
be followed to achieve a representative solution in IoT and then
lead to the important factors to answer the second research
question (RQ2):

Online and Continuous
The IoT principles propose reliable communication to

send and receive authentic information, safe and real-time
sensor operations, transmissions, and treatments [3]. All these
concerns connect the IoT environment with streaming analysis.
In this setting, real-time data demands real-time processing,
where each instance frequently arrives one instance at a time
and needs to be processed at most once. Therefore, these
demands constitute the strongest constraint for processing
data streams when the allowed time and memory complexities
should be limited and constant [83]. Streaming applications
like the one proposed in IoT impose unique constraints and
challenges for ML models. These applications involve analyz-
ing a continuous, possibly infinite, data sequence occurring in
real-time at high speed. This setting demands a fast learning
phase as each data record arrives in sequential order where the
whole dataset is not available, and storing the entire stream is
unattainable [84].

Unsupervised
In cybersecurity, as well as in other domains, the process of

generating labels or rules to distinguish normal from abnormal
behavior that work as ground truth is expensive, leaving the
system completely dependent on domain experts and vulnera-
ble to zero-day attacks [85]. In this sense, a promising solution
is to define an unsupervised environment that does not require
labeled input and where the objective is to draw inferences
about the underlying distribution. This method provides
theoretical support and interpretation, building a transparent
solution. As these methods rely on probabilistic distributions,
distance, or density measures, they support continuous output
scores achieved by the degree of such measures. On the other
hand, if such assumptions are incorrect, it can mislead the
model, making it vulnerable to adversarial attacks and high
false alarm rates [86]. From an ML perspective, by combining
the predictions of a set of base learners, or individual learners,
ensemble methods have shown to be a prominent solution as
they offer both flexibility and predictive power [87]. Moreover,
this approach becomes more resilient to evasion attacks since
the adversary would need to modify an attack pattern to
mislead the majority of the classifiers [11].

Dynamic
By definition, streaming data processing incorporates

sequential and various data, allowing a more realistic repre-
sentation of real-world phenomena. As so, it belongs to a
dynamic environment where the data distribution can change
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over time. Data distributions are subjected to environmental
and operational conditions changes, such as different traffic
loading, implying a normal behavior may evolve with time,
making the current definition of normal behavior no longer
acceptable [88]. To account for normal behavior evolution,
online anomaly detection in a non-stationary data stream is
formulated as a concept drift adaptation problem either solved
by data windowing techniques to limit the number of processed
data points [89] or incremental learning methods training and
updating the model as new events emerge [90].

Contextual Information
The available high-level information, such as contextual

information, situational awareness, and cognitive information,
combined with experts’ judgment of the expected behavior
and how it is supposed to react to certain inputs, should be
included in the intrusion detection process [91]. While most
of the proposed solutions concentrate on monitoring network
flow, providing a high-level solution, the suggested detection
strategy is to monitor the main asset or target each cyber threat
is looking to achieve. In this sense, developing a host-based
strategy as a second defense line, where the system perfor-
mance on the endpoint should mirror what the attacks intend
to compromise, designs a resilient approach independent from
the source of the attack. For instance, system calls can offer
great insights into the tasks a process is performing and the
capabilities and accesses it is acquiring. In this sense, they
reflect the potential points of failure and, most importantly,
represent specific, real-time, and behavioral data to build a
real-time resilient security system [43]. Therefore, it is advised
to develop a behavioral and context-aware security system that
distinguishes events interacting with the infrastructure.

Evaluation Criteria
In a highly imbalanced scenario, it is discouraged to use

any potential biased measures to average the models’ perfor-
mance due to the dominating effect of the majority class. In
this setting, the performance is fraught by the base-rate fallacy
problem often unveiled by the false positive paradox, where
the proportion of false positives outnumbers the true positives.
Supposing the false-positive rate is higher than the proportion
of anomalous samples, the supervisory experts will conclude,
from experience, that a positive output indicates an anomaly
when, in fact, it is more likely to be a false alarm. In order
to fulfill the requirements of an IDS, concepts such as effec-
tiveness, measured by the true positives and false alarm rates;
efficiency, considering the time and memory complexities and
delay of response actions; collaboration with domain experts so
they could identify points of failure, improve the alert descrip-
tion, and guide the model; interoperability between other de-
fense layers to control a broader range and resolve each other’s
disadvantages [92].

4.2. IDS comparison

Based on the advocated properties for a real-world security
system, Table 4 summarizes the review on recent available IDS

solutions to attest their ability as a defense line in an IoT en-
vironment. Each row identifies recent research solutions for a
security system detailed based on the adopted setting featured
in each column.

As evidenced, finding an ML-based solution for security sys-
tems that would match all requirements and desired proper-
ties is challenging. Most solutions design a batch processing
in contrast to streaming, continuous, and online solutions, de-
veloping a static system that cannot cope with the IoT ecosys-
tem or an adversarial scenario [93, 94, 95, 96, 97, 98, 37, 99].
In particular, solutions such as [93, 94, 100, 101] only focus
on detecting a specific type of attack, DDoS, using available
datasets that are either old and deprecated or do not represent
genuine environments. Most solutions do not show a clear con-
cern about the compatibility between the ML method and the
IoT requirements, choosing based on the solution’s effective-
ness. Although NIDS approaches, like [95, 99], did not con-
sider the imbalanced nature of anomaly detection in IoT, they
proposed an ensemble method with the ability to combine dif-
ferent predictions and improve generalizability and robustness
against insider attacks. Milajerdi et al. [102] presented a solu-
tion that aligns attack behavior with kernel audit records, com-
bining both information in behavior graphs and attempting to
map cyber threat intelligence indicators of compromise with
the system’s behavior. Although this procedure implements a
score that prioritizes effortful produced flows by attackers to
contain evasive threats, the memory and time comparisons re-
veal a bottleneck on the graph search expansion. This solution
implicates a continuous update on the attacks signatures and
system records mapped on the graphs, which have not yet been
described, classifying this solution as static and vulnerable to
zero-days. Moreover, solutions that introduced integration with
Snort and signature-based collaboration approach [94], or pro-
posed a real-time and lightweight environment to analyze the
communications of the IoT service layer [97], validated their
methods on both effectiveness, collaboration, and efficiency, re-
spectively. Although most of the reviewed methods define a
network system built on deprecated and not realistic datasets,
Lobato et al. [46] synthesized packet information from honey-
pots as malicious activities and the incoming flow as the normal
pattern, ensuring dynamic and adaptive behavior to detect new
threats. While both [97] and [94] network solutions created real
test environments and [37] validated on a smart home scenario
with adaptive mechanisms to when the network configuration
changes, Chawla et al. [96] provided a host-based approach
evaluated on a predefined balanced system call dataset that does
not reflect the working environment or provide any contextual
information to resolve intrusion procedures.

Although most of the analyzed network solutions failed to
provide a stream processing alternative, Noble et al. [45] de-
veloped a correlation-based streaming model based on a di-
rected graph structure to capture the communication process
of a network router-based protocol. Despite validating their re-
sults on an available cybersecurity events dataset, they designed
a streaming solution with forgetting factors, which allows a
temporally adaptive mechanism with dynamic and continuous
properties. Du et al. [103] proposed an anomaly detection
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Table 4: Reviewed IDS solutions based on the proposed suggestions.
Online
and Con-
tinuous

ML tech-
nique Dynamic Contextual Evaluation

Wang et al. [93] Batch Unsupervised Static
Flow-level features to com-
pare against the overall traf-
fic

Published available datasets to introduce
malicious entries. Only validated effective-
ness on DDoS.

Deshpande et al. [43]
Streaming
Sliding
window

Unsupervised Static Monitoring system calls and
system metrics

Real-time data. Not clear how the anoma-
lous events are being tested. Validated on
effectiveness.

Saied et al. [94] Batch Supervised Static NIDS focused on packet
headers.

Training on old and real data with different
DDoS attacks. Validated on effectiveness
and collaboration with SnortAI.

Noble et al. [45]
Streaming
Forgetting
factors

Unsupervised Temporally
adaptive

NIDS based on the Netflow
router-based protocol.

Large published available dataset. Vali-
dated on effectiveness.

Besharati et al. [95] Batch Ensemble Static NIDS network packet infor-
mation.

Published available dataset not representa-
tive of real-world networks. Validated on
effectiveness.

Lobato et al. [46]
Streaming
Online Supervised Adaptive

behavior
NIDS with honeypot traffic
packet information

Generated dataset from incoming flows
and honeypot data anomalies. Distributed
processing module. Validated on effective-
ness and efficiency.

Chawla et al. [96] Batch Supervised Static HIDS based on system calls.
Available dataset of system calls with bal-
anced classes. Validated on effectiveness
and efficiency.

Chaabouni et al. [97] Batch Supervised Static
NIDS analyzing the commu-
nication model of OneM2M
servive layer.

Generated traffic dataset capturing the rela-
tions between source and destination. Real
IoT test environment. Validated on effec-
tiveness and efficiency.

Khraisat et al. [98] Batch Ensemble Static
NIDS with packet informa-
tion from an IoT environ-
ment

Available dataset with normal and botnet
IoT activity. Validated on effectiveness and
collaboration.

Eskandari et al. [37] Batch
Semi-
supervised
Unsupervised

Adaptive
behavior.

NIDS with packet informa-
tion from an IoT environ-
ment

Real-world collected raw packets in an IoT
smart home. Validated on effectiveness
and efficiency.

Srivastava et al. [99] Batch Ensemble Static NIDS with raw network
packets

Published available dataset with ground-
truth anomaly instances. Comparative
analysis with other solutions validated on
effectiveness.

Milajerdi et al. [102] Batch Unsupervised Static
HIDS audit logs and cyber
threat intelligence indicators
of compromise

Experiments were conducted on DARPA,
simulating enterprise network adversarial
scenarios, real public incidents, and benign
events to stress-test on false positives. Val-
idated on efficiency and effectiveness.

Du et al. [103] Streaming Supervised Incremental
learning

Unlearning anomaly detec-
tion through incremental
learning for host and net-
work data.

Experiments conducted on real application
datasets from filesystem’s log entries and
network to credit card transactions. Vali-
dated on false positive and negative rates.

Wagner et al. [100] Streaming Unsupervised Static

Collaborative NIDS from
different network locations
and exchanging informa-
tion.

Experiments conducted on real datasets
collected network and routing information
from Internet Exchange Points (IXP). Val-
idated on accuracy.

Otoum et al. [56] Batch Supervised Static

Hybrid NIDS combining
signature and anomaly-
based for known and
unknown threats.

Experiments conducted on filtered traffic
from IoT gateways and available datasets
for a limited attack vector. Validated on ef-
ficiency and effectiveness.

Mothukuri et al. [5] Batch Federated
Ensemble Static

Federated, decentralized and
on-device NIDS, only shar-
ing learned weights with
central server.

Modbus-based dataset with traffic from
physical devices that lack inbuilt commu-
nication protocols. Validated on efficiency
and effectiveness.

Shen et al. [104]
Offline
Continuous

Reinforcement
Game-based Dynamic

Reinforcement learning in
a fog-cloud-based IoT net-
work to detect malware dif-
fusion and prevent privacy
leakages.

Real fog-cloud IoT network in a continu-
ous multistage. Numerical experiments on
the optimal diffusion probability.

Liu et al. [101]
Offline
Continuous

Reinforcement
Game-based Dynamic

Reinforcement learning in
sensor edge cloud (SEC) de-
vices to enhance dependable
resource allocation against
DDoS.

It evaluates the expected utility of the de-
fenders and attackers according to differ-
ent allocation schemes, attack states, and
learning techniques.
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solution validated on host, network, and credit card transac-
tion datasets. Although this approach designs a deep-learning
model, they use the idea of unlearning in an incremental and
continuous setting that allows the model to update and still re-
member important past events. Despite not specifying a stream-
ing or continuous setting, Wagner et al. [100] uses Internet Pro-
tocol Flow Information Export (IPFIX) to aggregate the infor-
mation per flow, without storing the payload of network traffic,
and implements a collaborative solution by limiting the amount
of information received from the same source and comparing
with well-know DDoS attacks to avoid false positives. Otoum
et al. [56] proposes an anomaly and signature-based IDS to de-
tect both unknown and known threats accurately and efficiently.
This hybrid solution debates the challenges imposed by a de-
tection system in an IoT environment, from the detection rate
to the processing time, by considering data preprocessing and
algorithms and data structures to accelerate signature searching
and matching. However, this method introduces an overhead
by preprocessing and selecting real-time traffic and instances
from a public dataset with limited attack vectors. This method
does not envision a nonstationary and unsupervised setting de-
spite combining signature and anomaly solutions by prefilter-
ing known attacks and integrating real-time and real-world traf-
fic. Following a current trend in the literature, Mothukuri et
al. [5] presents a federated learning-based anomaly detection
for IoT security attacks that argues that in many ML-assisted
approaches, data is generated at the edge and is transferable
to a central server without compromising user privacy. This
model trains and keeps the data in local devices, only sharing
learned weights to the central server. Although this strategy
emphasizes user privacy and evaluates precision, accuracy, and
training time, this deep learning ensemble proposes an IoT in-
trusion system running on an operating system and specialized
processing units that are not common to find in lightweight and
simple architectural devices. As the urgency of privacy pro-
tection in IoT networks has been catching the attention, Shen
et al. [104] suggests a reinforcement learning method to detect
malware diffusion and prevent privacy leakages in fog-cloud-
based IoT networks. This IDS and response system employs a
signaling game to disclose interactions between smart devices
and processing nodes. Despite proposing a real-time evalu-
ation framework by experimenting on an IoT network using
fog-cloud-based infrastructure, this method first observes and
records data and then analyzes and computes statistical points
and optimal probabilities. Furthermore, this work does not vali-
date the efficiency or effectiveness of the detection system, only
focusing on which parameters influence the convergence of dif-
fusion and infected probabilities. These latest techniques ex-
plored in recent literature manage to incorporate privacy con-
cerns and investigate interactions between devices and the net-
work with cyberattacks, modeling the purpose of cyber threats
and the IoT system in a game-theoretic framework. As an ex-
ample, Liu et al. [101] renders the interaction of the IoT net-
work and DDoS attacks as a game where the former seeks to
allocate computational resources and the latter tries to hinder
the defender from achieving the tasks’ demands. Despite ex-
amining the interaction and effects of a distributed attack on

the host resource consumption, this work only investigates dis-
tributed DoS attacks. It attests to a high computational and stor-
age capacity architecture that contradicts the IoT paradigm.

To sum up, based on the analyzed considerations, Deshpande
et al. [43] presented an unsupervised streaming solution with
relevant contextual information regarding the system’s inter-
actions that matches the highest number of recommendations,
only dismissing dynamic properties of this environment, with-
out considering concept drift, and evaluating on more than ef-
fectiveness.

Finally, based on the reviewed proposals and their shortcom-
ings, finding supervised, batch, and static settings in cyber se-
curity threat hunting are more recurrent, reflecting the lack of
collaboration between intrusion and anomaly detection fields to
team up and apply their best techniques. Moreover, this could
be one of the reasons these solutions fall short in terms of real-
time and appropriate evaluation criteria that leave experts reluc-
tant to deploy such methods.

4.3. How to build a real-time host-based dataset

Scientific advances rely on the reproducibility of results to be
independently validated and compared. Many intrusion detec-
tion approaches have been evaluated based on proprietary data,
and results are generally not reproducible [105]. Due to the
rapidly changing nature of cybersecurity, the standardization
of evaluation settings and metrics faces new challenges, which
have been addressed based on standard datasets with generated
traffic of previously known and studied attacks [106].

Currently, proposed security systems fail to design a com-
plete solution that resembles the environment it will be inte-
grated. In fact, they do not provide a real environment training
and testing to validate their methods according to effectiveness,
efficiency, or collaboration. In essence, some of the biggest lim-
itations include the limited attack coverage, as most researchers
focus on specific threats or the lack of real-world simulations
since the datasets do not provide contextual information of the
expected workload and applications.

Data collection is one of the most important parts of a data-
driven solution. This process should be a priority since building
a solution on top of a biased, skewed, or not representative work
setting produces unfit models. Data is also a mirror of a set
of interactions always connected to a certain time and context.
As so, in order to fully understand the environment of our task,
domain knowledge and data analysis cannot be separated [107].

The following discussion outlines a data collection strategy
for a security system. In this sense, a precise definition of the
task to accomplish, the data used to reproduce the implicit re-
lations, and the context and concerns to consider are primary
steps to detail in a data-driven security solution. Obtaining
valid, representative, and accurate data that reflects the context
and environment could be the key to building an IDS fit for ex-
ploitation.

Considering that a realistic detection dataset should repre-
sent the problem at hand, some core requirements must be fol-
lowed. Primarily, since anomaly detection datasets assemble
normal and abnormal instances, both cases should be drawn
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from a real-world generating process. Additionally, a bench-
mark dataset should also obey meaningful problem dimensions,
such as relative frequencies between incoming normal and ab-
normal points, variations so that different concepts and attack
vectors are considered, and feature relevance to better describe
the observed behavior [108].

Based on a detailed risk assessment and collaboration with
domain experts, the data collection framework should analyze
patterns to spot potential threats and points of failure. Further-
more, the normal behavior is the product of several underlying
events from different stages that could potentially increase the
false positive rate. By monitoring the system and considering
the system’s current state, a broader cyber threat coverage is
available, and the IDS becomes more resilient to adversarial at-
tacks [37].

Given that system calls are the virtual interface between an
application and the kernel, allowing actions like opening files,
creating network connections, reading and writing from and
to files, monitoring these calls and processing the informa-
tion based on customized metrics are good solutions to record
critical operations. System calls can offer great insights into
the tasks a process is performing and the capabilities and ac-
cesses it is acquiring. These perceptions can be invaluable for
troubleshooting, monitoring, and bottleneck identification [43].
However, analyzing the entire system call trace results in a slow
or late response against the intrusion, compromising the effi-
ciency of the security system [80]. The most important step to
achieving stability and security is to separate the operating sys-
tem core and application programs or user processes. In this
sense, it is crucial to be specific and filter processes handling
delicate jobs.

Therefore, we suggest filtering system interactions based on
system calls that imply tender and potential points of failure.
Then, these interactions can be summarized into system metrics
used to monitor the system performance throughout its runtime.
This data collection solution generated from incoming interac-
tions can be seen as normal instances that provide a real-time
and contextual setting. However, it is vital to estimate how the
model responds when facing cyber threats to evaluate the secu-
rity system’s effectiveness.

Given the growth and diversity of devices, the consequent
lack of investment in security mechanisms, and their exposure
to the Internet, connected and interoperable environments like
IoT are becoming more susceptible to attacks. From this expo-
sure, vulnerabilities are discovered as software errors and secu-
rity holes, allowing attackers to take advantage and have access
to the infrastructure. These vulnerabilities are defined under the
name of CVE, which are cataloged as a list and maintained by
the National Cybersecurity Federally Funded Research and De-
velopment Center (NFC). Therefore, this database can exploit
cyber attacks for different platforms and label them as anoma-
lies to test a security IDS.

As the experimental environment should be designed accord-
ing to the ecosystem in which the final model is supposed to
work, the setup should be configured in line with the speci-
fication of an IoT actuator device. Given the architecture of
such devices, this setting is also valid for servers or worksta-

tions, validating the approaches in a broader range of appli-
cations. Therefore, as the designed data collection framework
generates information, a considerable number of vulnerabilities
can be exploited so that anomalous traffic is produced in a con-
trolled environment. This strategy will provide ground truth for
a whole and contextual evaluation scheme, meeting our third
research question (RQ3).

5. Open source HIDS evaluation

Practical implementations of detection systems require some
factors to be considered, such as attack vectors or the ability
of the solution to adapt and recognize new threats. As a result,
a review and comparison of different open-source HIDS solu-
tions according to the proposed evaluation scheme in a use case
application. This methodology will assign the robustness of the
tested solutions by analyzing the specification and general cov-
erage towards previously known attacks.

5.1. Use Case - Smart Campus

The IoT structure enhances the heterogeneity and availabil-
ity of services and applications that define smart devices used
in different consumer and organizational applications such as
smart homes, healthcare, smart cities, and smart campuses.

In 2019, Gartner identified smart campuses as one of the top
10 strategic technologies impacting higher education. The or-
ganization defined a smart campus, a concept that has been ap-
plied in developed countries for several years, as “a physical or
digital environment in which humans and technology-enabled
systems interact to create more immersive and automated expe-
riences for university stakeholders”3. Driven by smart campus
applications, this IoT use case will instance a continuous envi-
ronment simulation of a real-life HIDS dataset as envisioned in
RQ3.

Sustaining the IoT operational effectiveness and efficiency,
the smart campus concept, adapted from smart cities, focuses
on smart education, parking, and administration supporting aca-
demic services for a more sustainable and successful institution.
In this sense, smart campuses design insight-driven decisions to
improve security, maximize resources and join people, devices,
and applications. However, these smart context properties also
reflect security challenges where many attacks aim to compro-
mise the entire infrastructure.

Figure 3 represents the architecture of an IoT smart cam-
pus. On the bottom layer, campus information management,
the physical and perception layer is represented, showing dif-
ferent data collected in this setting. From parking spaces, map-
ping technologies, detecting water leaks, controlling humidity,
and facial and location intelligence to promoting engaging plat-
forms and inclusive activities, this scenario allows a smart and
automated monitoring attendance while maintaining a human-
centric approach [109].

3https://www.gartner.com/en/newsroom/press-releases/2019-03-26-
gartner-identifies-the-top-10-strategic-technologies-(May 2021)
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IoT units receive and send wireless or Bluetooth connections
responsible for sharing information to ensure communication
between devices. These units incorporate hardware, software,
and cloud services. The hardware component can be seen as
a microcontroller board equipped with sensors, wireless, and
other connection pins [110]. Thus, one way to mimic hard-
ware equipment and emulate IoT components behavior in a
smart setting is by using Raspberry Pi, a series of low-cost pro-
grammable computers. These components have GPIO (General
Purpose Input/Output) pins that allow other electronic compo-
nents to connect and gather information, expanding and inte-
grating their communications, activities, and capabilities in an
ad-hoc mode [111].

The information gathered in the perception layer is man-
aged, processed, and routed to a specific application or ser-
vice through networking protocols, system management tools,
or web services and platforms. The management services layer,
depicted in Figure 3, is responsible for complex event process-
ing on edge or cloud, integrating streaming and real-time anal-
ysis to promote real-time solutions and improve the quality of
offered services.

Apart from the physical exposure inbred in the perception
layer, the information now handled and transmitted to a differ-
ent part of the network faces challenging problems related to
security and privacy introduced by physical interactions among
devices, dealing with dynamic spatial and contextual data, or
flawed development features where most of the available com-
munications protocols are not suitable for resource-constraint
devices [112]. Therefore, besides the necessity to balance
performance and consumed resources, this heterogeneous net-
work should not lower security standards, becoming impera-
tive to provide regular software and firmware updates and se-
cure communications, authentication, as well as user informa-
tion [55, 60, 79].

Figure 3 now portrays several services, categorized accord-
ing to the designed application from protocols providing net-
work communication, system management, and services to vi-
sualization and monitoring applications without ruling out pro-
gramming libraries and modules found in many software fea-
tures. In the ad-hoc layer, services are exposed using HTTP
services, such as nhttpd or tomcat, allowing users to query and
manage software using these services and packages. Given the
high number of moving users from different backgrounds and
needs, the analytic data is fundamental for university employ-
ees and students to coordinate room and equipment usage, ad-
ministration, and resource management. This layer represents
important services found in an IoT environment, particularly
in a smart campus setting, symbolizing some of its biggest
challenges and risks such as outdated firmware, plaintext pass-
words or communication, development bugs, or default config-
urations. Such services can be found in known vulnerability
datasets as susceptible versions due to poor configuration set-
tings, incorrect parameters, or implementation flaws.

Due to the demand for interconnection and information inter-
change with technology, IoT systems struggle with security and
privacy issues. However, many developers and companies feel
reluctant to implement security solutions as available systems

Figure 3: Smart Campus

are too complex for lightweight IoT devices [113].

5.2. Evaluation Scheme
In this study, we will focus on the top used HIDS systems

available on the market and have been indicated and reviewed
as the main software tools compatible with the ARM architec-
ture [114, 113]: Samhain [115], Tripwire [20], Open Source
Security (OSSEC) [19], Advanced Intrusion Detection Environ-
ment (AIDE) [116], Sagan [117] and Fail2Ban [118]. Table 5
summarizes the significant aspects of these systems, where the
tested vulnerabilities were all consistent with the HIDS stable
release version presented in Table 5.

From the tested system, only OSSEC designs an open-
source solution supported on all major OS platforms [119]. As
these tools are host-based applications, they all offer filesys-
tem monitoring by comparing file signatures, like AIDE [120],
cryptographic hashes, like TripWire [121], or by monitoring
checksums like OSSEC [119]. These solutions provide real-
time monitoring tools with policies to customize rules and
alerts. While AIDE develops a multi-threaded architecture for a
lightweight service with easy rule management [122], Samhain
provides a log file and port monitoring service, rootkit detec-
tion, or uncovering hidden processes based on a stealth ap-
proach to prevent adversarial attacks [123]. Although most se-
curity systems choose to raise an alert when a threatening event
is targeting the system, Fail2Ban provides a prevention sys-
tem and active response mechanisms that block IP addresses
and become effective against DoS attacks [124]. As described
previously, any security system must look to achieve real-time
performance. TripWire, particularly used to monitor a desig-
nated set of files and directories for any changes, does not gen-
erate real-time alerts, despite monitoring permissions, internal
file changes and timestamps, writing and storing details on a
log file [121]. Finally, OSSEC is a leading, entirely free, and
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a manager/agent architecture HIDS that analyzes information
in real-time from event logs, firewall, antivirus logs, and traf-
fic logs, providing active responses using both signature and
anomaly detection methods [119].

Table 5: Open-source HIDS
OS Features

OSSEC
3.6
Feb2020

Unix,
Win-
dows

Log file processing
Monitoring firewall and traffic log
Defined alerts through policies

Fail2Ban
0.10.2
Jan2018

Unix
Log file monitoring
Active response
Prevention System

Tripwire
2.4.3.1
Apr2016

Unix
Unauthorized file changes
Cryptographic hashes
Permissions, internal file changes

Sagan
1.1.2
Jan2019

Unix
Log file monitoring
Rule syntax as Snort
Lightweight

Samhain
4.4.2
Oct2020

Unix
File integrity checking
Port monitoring
Stealth monitoring

AIDE
0.16.3
Sep2018

Unix
File signature comparisons
File and directory integrity
File attributes database

For the evaluation purpose, the setup was configured bearing
in mind the hardware and operating system’s availability, af-
fordability, and facility. Therefore, following the requirements
on how to build a real-time dataset, outlined in Section 4.3, the
evaluation procedure of the HIDS was conducted on normal in-
stances, represented by the expected behavior of an IoT ecosys-
tem, expressed in Section 5.1, and abnormal traffic portrayed
by cyber threats.

To attend a dynamic and evolving real IoT environment, a
similar scenario to the use case described in Section 5.1 will
generate system interactions and describe the expected behav-
ior. In this setup, Raspberry Pi 4 devices (model B), with 4 GB
of RAM, running Ubuntu 20.04 LTS 64 bits, will be used to
replicate smart objects. The tests will be pursued on a client-
server and ad-hoc mode, through the WiFi board and an ether-
net connection to central servers.

A set of vulnerabilities from different types of attacks, cur-
rently threatening IoT infrastructures, will be fed for the anoma-
lous traffic while the system performs its usual tasks. Similar
to the idea of a trapdoor-enabled detection, presented in [125],
instead of hiding the flaws, the vulnerabilities are expanded,
creating adversarial examples that are easier to identify and pro-
vide valuable insights. These vulnerabilities are available in the
CVE list of entries, which contains an identification number,
a description, and, at least, one public reference for publicly
known cybersecurity vulnerabilities [126]. These records are
typically used in vulnerability scanners, inspecting systems and
networks for potential problems, and report the results based

on this dictionary of publicly known security exposures, such as
works addressing intrusion systems for network data [111, 127]
or recent anomaly-based system solutions [37].

With a smart campus environment in mind, described in Sec-
tion 5.1, the generated anomalies from the CVE dataset, to val-
idate the host-based systems were chosen based on the typical
vulnerabilities of these ongoing services and applications an at-
tacker wants to exploit to compromise or gain access to a par-
ticular device. As a result, we consider services from network-
ing protocols (i.e., NTP and SNMP), Shell Management (i.e.,
SSH), Web services (i.e., nhtop, webmin, and tomcat), analyt-
ics (i.e., SQL services), and generic vulnerabilities from pro-
gramming libraries (i.e., PHP) reported in generic software for
IoT. Furthermore, according to its impact, the base score as-
signed to each threat also played an important role in the final
decision [128]. In this sense, each CVE explored will be de-
scribed by the attack vector and its base score, a severity rating,
ranging from 0 to 10 (0 - None, [0.1, 3.9] - Low, [4.0, 6.9] -
Medium, [7.0, 8.9] - High, [9.0, 10] - Critical). In these trials,
all vulnerabilities recorded medium or higher base score levels
and were all available in the tested network, even if not present
simultaneously.

5.3. Discussion

Table 6 shows the results of evaluation tests of six open-
source HIDS, using the CVE vulnerabilities, specified in each
row. When a security solution is not designed to detect a partic-
ular vulnerability and the required mechanisms are missing, the
event is depicted as impractical. The list of CVE with a detailed
description and reproduction scripts can be found in a GitHub
repository4.

Considering software injection attacks, in the SQL-injection
technique, most of the HIDS were capable of detecting the at-
tack, regardless of their variant. However, Sagan and Samhain
obtained the worst performance. In particular, Sagan could
not detect either of the attacks, and Samhain did not uncover
CVE-2020-9268 exploiting the vulnerable OrderBy clause in
SoPlanning (v. 1.45) application. In fact, only the signature
mode employed by these security systems was able to detect the
temporary files uploaded by sqlmap used to verify and exploit
SQL injection flaws [129]. The anomaly-based variant detected
the abnormal requests and blocked the connection after 3 to 4
requests, depending on the time difference between requests.
However, only OSSEC and Fail2Ban, implementing signature
variants, were able to detect CVE-2019-13189 when monitor-
ing start url and user id fields of Knowage application. The
anomaly-based approach failed to detect XSS and XEE attacks
in all systems.

Regarding vulnerabilities threatening the confidentiality
principle, when exposed to RCE attacks, the most general result
was the successful detection of the attack except for CVE-2019-
9624, detected only by TripWire. This vulnerability, which
allows the execution of arbitrary code by leveraging the Java

4Available after the publication: https://github.com/simao-silva/iot-cves
5https://nvd.nist.gov/vuln/detail/[ID]
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Table 6: Experimental trials

Attack CVE Base
Score OSSEC

Fail2
Ban

Trip
Wire

Sagan
Samhain

AID
E

XSS CVE-2019-131895 6.1

XXE CVE-2019-156415 6.5

SQL-
Injection

CVE-2020-93405 7.2

CVE-2020-92685 7.5

Bypass
Control CVE-2019-131885 9.8

Improper
file access CVE-2018-87125 9.8

Unauthorized
file real CVE-2020-19385 9.8

Privilege
Escalation

CVE-2019-142875 8.8

CVE-2019-98915 9.8

CVE-2019-83205 7.4

CVE-2019-57365 8.6

CVE-2018-109335 9.1

CVE-2019-186345 7.8

RCE

CVE-2020-72465 8.8

CVE-2019-162785 9.8

CVE-2019-156425 8.8

CVE-2019-151075 9.8

CVE-2019-128405 8.8

CVE-2019-110435 8.7

CVE-2019-96245 7.8

CVE-2019-77315 9.8

DoS

CVE-2020-92835 7.5

CVE-2020-60605 7.5

CVE-2019-174985 8.1

CVE-2019-162795 7.5

CVE-2019-131155 8.1

CVE-2018-71825 7.5

Detected Undetected Impractical

file manager on webmin 1.9, is uncovered only if the partition
was mounted with strictatime option, explicitly requesting full
atime updates. Only the anomaly-based approach was consid-
ered in privilege escalation threats since signature-based IDS
does not have the features required to detect this attack. In
most cases, only OSSEC was able to spot this attack vector.
The results show that CVE-2019-9891, where the shell func-
tion getopt simple allows execution of attacker-controlled com-
mands, and CVE-2019-18634 that triggers a stack-based buffer
overflow when the pwfeedback option to allow password visual
feedback [130] is enabled in Sudo (v<1.8.26) were not detected
by any system. Since these vulnerabilities score a high sever-
ity value, these results show that the most common solutions
cannot cope with some of the most concerning threats.

Related to jeopardizing the availability principle, DoS at-
tacks have been tested only considering anomaly-based ap-
proaches. In most cases, most HIDS showed their inability to
cope with these attacks by either failing to detect or not design-
ing a solution robust enough to deal with these specifications.
Particularly, in all exploits of CVE-2019-16279, where a mem-
ory error in the function SSL accept in nostromo nhttpd through
1.9.6 is used to trigger a DoS attack via a crafted HTTP request,
we were able to disrupt the service without being detected by
the security systems.

In essence, HIDS systems with a monitoring approach and
predefined rules were only able to detect massively used at-
tacks such as brute-force or SQL injection. Moreover, when
anomaly-based detection is integrated, and customized rules are

generated, HIDS solutions become more successful and robust
to RCE attacks.

Regarding the algorithms used for file integrity, many sys-
tems still use deprecated algorithms vulnerable to collision at-
tacks. In the tested HIDS, popular file integrity algorithms MD5
and SHA1 were compromised when known attacks like SHAt-
tered were applied. If the HIDS only relies on this mechanism,
these attacks can be imperceptible, making the security system
obsolete. Therefore, applying different methods and consider-
ing their merits and demerits show that a hybrid solution like
OSSEC is a promising direction.

6. Future research directions

In an interconnected infrastructure that provides diverse
functionalities and services according to user requests and data
feedback, security and privacy concerns of physical objects in-
flict crucial requirements.

Intrusion detection systems in IoT should account for broader
attack vectors and adversarial threats in a streaming environ-
ment to develop a cost-sensitive and context-aware method that
analyzes potential targets and damage costs. In this sense, the
following procedure will focus on implementing a security sys-
tem that follows the proposed guidelines to design a realistic
and resilient approach from the data processing and methodol-
ogy to its context-aware and evaluation settings.

The idealized strategy of a hybrid detection system formed
by signature and contextual host analysis as a first and sec-
ond defense line, as well as the urge to reduce false alarm rates
and increase robustness with human expertise to identify points
of failure, hidden relations, or improve alert descriptions, is a
promising future direction.

In recent approaches in the literature, reinforcement learning
is gaining more popularity [131]. This technique can learn the
environment, investigate interactions, and dynamically adapt
parameters on the fly by associating possible outcomes with
detection, diffusion, and privacy gain and costs [104, 101]. Al-
though this strategy is gaining attention, most attempts design
their methods in architectures and devices with high computa-
tional capacities to perform computational-intensive tasks that
are incompatible with IoT infrastructures. Thus, this alternative
is also a potential future direction.

Another challenge that has not been addressed enough is
the privacy demand that smart applications handling user data
and behavior patterns impose. Privacy-preserving embodies au-
thentication, data collection, processing, sharing, and storage
from access control mechanisms to encryption schemes. How-
ever, while applying privacy measures to reduce information
leakage, an IoT system must always guarantee its practical-
ity [132].

E-commerce solutions [133], location-based services [134],
and information retrieval applications [135] use a dummy-
based approach for privacy protection, whose basic idea is to
use well-designed dummy queries to cover up user queries and
protect the real request. Moreover, all proposals recognize the
importance of not compromising the accuracy and efficiency of
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the services from dummy queries to secure query index through
searchable encryption ideas and stemmer mechanisms [136].

Furthermore, a current trend towards ensuring accuracy and
privacy policies, denominated federated learning-based, have
been discussed in the literature. Federated learning is a collab-
orative ML technique that does not require centralized training
data in one device or a data center. For IoT security, this ap-
proach trains and keeps the data in local devices, only sharing
learned weights to the central server and ensuring privacy [5].
As evidenced in other ML techniques, this alternative devel-
ops its strategy in operating systems and specialized processing
units that are not common to find in lightweight and simple
architectural devices as encountered in IoT. Moreover, as new
techniques and strategies emerge, new methods and possibili-
ties surface to protect IoT security in modern applications that
commonly fail to match all the demands enforced by the envi-
ronment and the task at hand.

7. Conclusion

The objective and priority of this work are to reinforce the
importance of defining the main domain characteristics for a
better and robust real-time solution. The potential risks and
the ultimate purpose of each threat for a clear perception of the
scope and complexity of the working environment complete the
first research question (RQ1).

Anomaly detection solutions in IoT mainly focus on com-
parisons with hashes or log file entries based on the expected
behavior, failing to uncover hidden patterns, learn from experi-
ence, and potentially detect future threat vectors. In this sense,
base recommendations to develop a security system regarding
the inherent attributes were proposed to answer RQ2.

While anomaly detection proposals do not consider the IoT
context and limitations about heterogeneous and fast formats
with memory and time restrictions, cybersecurity does not eval-
uate or collect the right datasets, choosing to design solutions
focused on common patterns and known threats. This work
delineates a third research question (RQ3) by presenting a real-
time and contextual dataset with the ongoing traffic and opera-
tions reflecting the normal behavior and the exploited vulnera-
bilities from CVE lists as anomalies.

When exploiting some of the latest vulnerabilities to the
most common open-source HIDS, these systems appear lim-
ited. They do not embrace all services or applications, focusing
on those popularly installed in systems. In fact, the services
are expected to be installed with default parameters or will be
forced to add custom rules or modify the available ones.

As a result, a real-time and complete representative intru-
sion detection system in IoT is a demanding and urgent solution
where the main research challenges remain.
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