
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Hardware security for Internet of Things identity
assurance

André Cirne∗‡, Patrı́cia R. Sousa§, João S. Resende∗¡, Luı́s Antunes∗†

∗Dep. de Ciência de Computadores, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n,
4169-007 Porto, Portugal †TekPrivacy, Lda; Faculdade de Ciências da Universidade do Porto, Rua do Campo

Alegre 1021-1055; 4160-007 Porto, Portugal ‡INESC TEC, Campus da Faculdade de Engenharia da Universidade
do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal §INSIGHTSEC, Lda; Aveiro, Portugal

Abstract—With the proliferation of Internet of Things (IoT)
devices, there is an increasing need to prioritize their secu-
rity, especially in the context of identity and authentication
mechanisms. However, IoT devices have unique limitations in
terms of computational capabilities and susceptibility to hard-
ware attacks, which pose significant challenges to establishing
strong identity and authentication systems. Paradoxically, the
very hardware constraints responsible for these challenges can
also offer potential solutions. By incorporating hardware-based
identity implementations, it is possible to overcome computational
and energy limitations, while bolstering resistance against both
hardware and software attacks.

This research addresses these challenges by investigating the
vulnerabilities and obstacles faced by identity and authentica-
tion systems in the IoT context, while also exploring potential
technologies to address these issues. Each identified technology
underwent meticulous investigation, considering known security
attacks, implemented countermeasures, and an assessment of
their pros and cons. Furthermore, an extensive literature survey
was conducted to identify instances where these technologies have
effectively supported device identity.

The research also includes a demonstration that evaluates the
effectiveness of hardware trust anchors in mitigating various
attacks on IoT identity. This empirical evaluation provides
valuable insights into the challenges developers encounter when
implementing hardware-based identity solutions. Moreover, it
underscores the substantial value of these solutions in terms of
mitigating attacks and developing robust identity frameworks.

By thoroughly examining vulnerabilities, exploring tech-
nologies, and conducting empirical evaluations, this research
contributes to understanding and promoting the adoption of
hardware-based identity and authentication systems in secure
IoT environments. The findings emphasize the challenges faced
by developers and highlight the significance of hardware trust
anchors in enhancing security and facilitating effective identity
solutions.

Index Terms—IoT, device’s identity, identity, hardware-based
identity, hardware trust anchors, hardware attacks

I. INTRODUCTION

The Internet of Things (IoT) is a vast ecosystem of in-
terconnected devices that rely on the Internet to share data.
Almost any device can be connected to this network, includ-
ing smartphones, wearables, motion sensors, cars, and smart
home appliances. As the number of IoT devices connected
to the Internet continues to grow [1], they are becoming an
integral part of our daily lives. Moreover, many industries

Manuscript received April 19, 2021; revised August 16, 2021.

are increasingly using them to replace humans in factories,
farms, and other jobs [2]. This trend shows no signs of slowing
down; in fact, it is expected to accelerate further due to the
emergence of advanced technologies such as 5G [3], Big
Data [4], and Fog Computing [5]. These technologies enhance
connectivity to end devices, increase network bandwidth, and
provide more storage and computing resources, making it
easier to handle the massive amounts of data generated by IoT
devices. Consequently, the number of IoT devices is likely to
continue its significant growth in the coming years [3].

As the number of IoT devices increases, the need for
robust security policies and controls throughout the entire
IoT life cycle also grows [6]. IoT devices are known to
be vulnerable, and developing effective security solutions is
considered one of the foremost research challenges in this
field [7], [8]. This problem primarily arises from a general lack
of security standards and the pursuit of cost-effective systems,
which often leads developers to deprioritize security during
the development process [9]–[11].

Among the various security challenges in this domain [12],
[13], device identity stands out as one of the most critical
factors for establishing a secure system. Authentication is
the process of verifying the identity or origin of an object
or person, which is particularly relevant in the context of
IoT. Thus, Identity Management (IdM) forms the foundation
for secure authentication methods. By establishing a reliable
and trustworthy IdM system, IoT devices can be securely
authorized and authenticated, facilitating their communication
and data exchange with other devices while mitigating the
risks of unauthorized access or data breaches. IdM entails the
creation, maintenance, and control of digital identities for IoT
devices, users, and applications. Without these foundational
elements, designing a secure IoT system becomes unattainable,
as it hinders the ability to control access to resources within a
system and ensure the accuracy of information received from
a device [14]. Despite these facts, the previously mentioned
issues hinder the implementation of identity and authentication
mechanisms. This often leads to custom solutions without peer
review, reliance on slow or outdated cryptographic algorithms,
and, consequently, suboptimal security.

Moreover, IoT devices are more susceptible to physical
attacks than other devices [15], and this has significant impli-
cations for the development of IoT authentication and identity
systems. Unlike computers and servers, IoT devices are often

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

deployed in unprotected locations where attackers can gain
unrestricted physical access. Consequently, IoT devices are
more prone to physical attacks, such as tampering, theft,
or destruction, which can jeopardize their security and the
entire IoT network. Given this challenge, it is evident that
safeguarding IoT devices against physical attacks is essential
to ensure their security and reliability [15].

IoT devices consist of two primary components: software
and hardware. The software implements the device’s logic,
while the hardware supports its execution and facilitates
interactions with the physical world. Therefore, there is an
intrinsic relationship between these components, with the
software running on top of the hardware. When it comes to
identifying and addressing vulnerabilities in IoT devices, a
range of tools and techniques are available to handle issues
in the software component. These tools include code auditors,
fuzzers, debuggers, and static analyzers, which can help detect
and remediate software related issues. However, addressing
hardware vulnerabilities can be more challenging due to the
limited availability of tools for this purpose. As a result,
hardware vulnerabilities may take longer to be detected and
resolved compared to their software counterparts. Despite this
challenge, IoT manufacturers and developers must remain vig-
ilant in identifying and mitigating both software and hardware
vulnerabilities to ensure the security and reliability of their
devices [16].

Attackers employ both software and hardware attacks to
exploit these vulnerabilities. However, owing to the intricate
relationship between software and hardware, the nature of an
attack may not necessarily align with the nature of the target.
For example, a hardware attack may target software, and vice
versa. Furthermore, many software attacks can be executed
remotely, while hardware attacks require physical access to the
device [17]. Consequently, addressing hardware attacks must
be a priority for manufacturers, given the susceptibility of IoT
devices to physical attacks.

In contrast, a Root-Of-Trust (RoT) is a process that can
safeguard the identity of an IoT device from potential software
and hardware attacks. A RoT begins with an immutable
(unchangeable) hardware identity deeply integrated into the
IoT device. Essentially, it serves as the foundation for a chain
of trust, providing an unalterable starting point that can be
relied upon to authenticate subsequent actions and transac-
tions. While a hardware RoT can be exceptionally valuable
for highly sensitive applications, providing a hardware-based
trust anchor is also a fundamental element for any secure
IoT device, since its inclusion can deliver a higher level of
assurance and resilience compared to purely software-based
security mechanisms.

Despite the widespread belief that a RoT can provide
device security against software and hardware attacks, research
suggests that this assumption may not always hold true [18].
While hardware-based RoT are generally considered robust
and resistant to tampering, they can still be vulnerable to
sophisticated hardware attacks capable of compromising the
entire chip. These vulnerabilities enable attackers to bypass
identity authentication and data encryption, potentially leading
to the theft of valuable intellectual property and causing sig-

nificant application security issues. Therefore, while hardware-
based roots of trust offer certain security advantages, their
design must account for sophisticated attacks and ensure
adequate protection against them. Consequently, there is a
growing demand for the implementation of hardware-level
security features [16], [18]–[20].

A. Related research overview

Several literature reviews have been published on hardware
security and identity, and some of them share similarities
with our work. For instance, Ehret et al. [21] conducted a
survey of hardware-based security techniques applicable to
IoT devices. Their research delves into various components
of an IoT device, such as its processing unit or memory, and
addresses the hardware security threats associated with these
components, along with potential mitigations, encompassing
both hardware and software countermeasures.

Hu et al. [22] pursued a research direction similar to that
of Ehret et al., but their work stands out by providing a
comprehensive review of security tools designed to validate the
security of devices. Specifically, Hu et al. focused on evaluat-
ing tools capable of scrutinizing device security by analyzing
information flows within the hardware board. Moreover, they
emphasized the importance of verifying whether the device’s
implementation aligns with its intended design.

Michailidis et al. [23] also conducted a survey of hardware
attacks concerning device security and listed possible counter-
measures, including those based on machine learning. There
are also works that solely analyze hardware attacks without
encompassing countermeasures [24]. Akter et al. [25] analyzed
current trends in hardware security from both physical and
software perspectives. Their work explores countermeasures
for these attacks, with a particular focus on PCB design
techniques aimed at minimizing associated risks. Yang et
al. [26] reviewed different technologies that can be used to
support the identification and authentication of IoT devices.
They explored how each technology can serve as a building
block for new systems and examined potential security at-
tacks on these technologies. Although Yang et al.’s research
is not specifically focused on identity, it acknowledges the
significance of device identity for overall device security and
highlights some technologies that can be utilized for this
purpose. In comparison to these works, our analysis focuses
specifically on hardware security for the purpose of identifying
and authenticating IoT devices via hardware. Consequently, we
present a threat analysis tailored to this specific purpose and
establish the relationship between these threats and how they
can compromise the device’s identity.

Cheruvu et al. [27] presented a comprehensive guide to IoT
system security in their work, titled ”Demystifying Internet
of Things Security: Successful IoT Device/Edge and Platform
Security Deployment”. Their coverage encompasses a broader
range of topics compared to our work. They provide practical
advice on deploying security solutions for IoT devices and
platforms, offer threat modeling for specific IoT application
domains, and compare security features of various IoT Op-
erating Systems (OSs). While both Cheruvu et al. and our

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

work emphasize the significance of hardware-based solutions
and how they can leverage identity in IoT, there are notable
distinctions. Cheruvu et al. dedicate a chapter entitled ”Base
Platform Security Hardware Building Blocks” to an explo-
ration of technologies involved in securing an IoT device. They
also discuss the importance of identity for secure systems and
address the threats these technologies may mitigate. However,
unlike our work, Cheruvu et al. restrict this discussion to
Intel technologies and product lines, focusing on software
threats while omitting consideration of hardware attacks. This
exclusive focus on Intel products limits the applicability of
their findings since IoT devices commonly employ alternative
Central Processing Unit (CPU) architectures like ARM or
RISC-V for their energy efficiency and cost-effectiveness —
architectures not included in Intel’s product lineup. In contrast,
our research adopts a vendor and CPU architecture agnostic
approach. Furthermore, our emphasis centers on analyzing
hardware threats rather than software threats, providing a
distinct perspective on device security.

Shepard et al. [28] delved into hardware security by re-
viewing technologies that facilitate safe and reliable execution
in IoT systems. Throughout their analysis, they established a
threat model and evaluation criteria specifically tailored to the
IoT use case, enabling them to compare various technologies.
Their threat model encompassed adversaries with physical
access to the device. Furthermore, the criteria used to assess
different technologies considered resilience against hardware
attacks, such as protection against fault injections, secure stor-
age, and tamper-resistant hardware. However, it is important
to note that the article did not explore these attacks in detail;
instead, they were merely mentioned as characteristics that
these technologies must possess to support secure and trusted
execution in IoT.

Compared to our work, Shepard et al. pursued a broader
research question: how to achieve secure and trusted execution
in IoT. Consequently, many of the technologies analyzed
in their work are also mentioned in ours. Nonetheless, our
analysis differs significantly as we concentrate on identity
and the specific threats to hardware that can compromise it.
Additionally, we thoroughly explored different attacks that
can target these technologies and developed a demonstration
environment to illustrate some of these attacks along with
potential mitigations.

In conclusion, our study has centered on hardware security
with a specific focus on the identification and authentication of
IoT devices through hardware-based methods. We conducted
a thorough threat analysis tailored to this specific objective,
uncovering potential risks and their implications for compro-
mising device identity. Furthermore, we delved into various
hardware-based technologies that can facilitate the implemen-
tation of robust device identity measures. Throughout our re-
view, we diligently examined the current state of research and
found no other work of significant note in this specific area.
What distinguishes our work is the comprehensive assessment
of threats that target device identity and the corresponding
hardware technologies essential for supporting identity imple-
mentation. Lastly, to illustrate the practical implications of our
research, we conducted an experiment using an actual device

to demonstrate how its identity can be targeted and to propose
potential mitigation strategies against such attacks.

B. Case study

This work employs a case study approach to explore various
aspects of our research, with a specific focus on smart meters.
Smart meters serve as measuring instruments for household
energy consumption and are typically owned by energy com-
panies, with a paramount requirement that they remain tamper-
proof.

Smart meters, also known as Advanced Metering Infras-
tructure (AMI), offer a range of benefits, including the abil-
ity to remotely measure household energy consumption and
manage the unit. This management includes services such as
disconnection and power supply adjustments, making them
vital for utility companies. Additionally, smart meters play a
critical role in the implementation of smart grids by providing
real-time data that enhances energy distribution and informed
decision-making [29].

Communication between smart meters and the broader grid
can be established through two distinct approaches: wireline
and wireless. Wireline technologies utilize cable infrastructure
to create bidirectional communication channels between smart
meters and the utility company’s infrastructure. This technol-
ogy can use power lines as a communication medium or em-
ploy dedicated cables for data transmission, such as fiber optics
or telephone infrastructure. Conversely, wireless technologies
rely on radio communication, with various solutions available
for implementing wireless communication, including cellular
communications and mesh networks [29].

For our case study, we will consider a wireless mesh
network as the communication infrastructure for our smart
meter. This network comprises multiple meters that transmit
measurements and relay messages from neighboring meters
to the nearest concentrator. The concentrator, functioning as a
gateway for the mesh network, is connected to the internet and
ensures that the meter’s traffic reaches the utility company’s
back office [30] (see Figure 1).

C. Contributions

The objective of our research is to offer a comprehen-
sive analysis of hardware trust anchors and their potential
to support the implementation of identity systems for IoT
devices. In summary, our research delivers the following key
contributions:

• Threat analysis: We identify physical risks to IoT identity,
define security assets and goals, describe threat actors,
and outline potential threats and corresponding counter-
measures. This in-depth analysis aids in designing and
implementing effective hardware-based identity solutions.

• Technology analysis: We scrutinize various technologies
that can bolster device identity, evaluating their advan-
tages and disadvantages, security concerns, and provid-
ing examples of their use. This analysis offers valuable
insights into selecting and deploying suitable hardware
trust anchors for IoT devices.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

 Utility
Company
Back-office

Wireless connection

Wire connection

Gateway

SMART METER

0000.0
SMART METER

0000.0

SMART METER

0000.0

SMART METER

0000.0
SMART METER

0000.0

Fig. 1: Advanced metering infrastructure network

• Experimental evaluation: We carry out experiments to
assess the effectiveness of hardware trust anchors in
mitigating different attacks on IoT identity. This evalua-
tion furnishes empirical evidence regarding the challenges
faced by developers when implementing hardware-based
identity solutions and underscores their value in counter-
ing attacks and establishing effective identity solutions.

• Discussion of challenges: We discuss the challenges
associated with the adoption of hardware trust anchors,
encompassing both technical and economic factors. Addi-
tionally, we highlight potential avenues for future research
that can address these challenges and enhance the security
of IoT identity systems.

Overall, our research provides a comprehensive and prac-
tical guide for designing and implementing hardware trust
anchors for IoT identity systems. The ultimate aim is to
enhance the security and privacy of IoT devices and their users.

D. Outline

The structure of the rest of this article is as follows:
Section II briefly introduces identity and authentication

and their current state of development within the context
of IoT. In this section, we analyze the distinctions between
traditional and IoT-based IdM, enumerate various research
challenges found in the literature related to device identity and
authentication processes, and provide a comparative analysis
between two identity systems - one traditional and the other
purpose-built for IoT. Section III explores the selection of
the appropriate hardware trust anchor technology for each
application. To do so, we elaborate on a threat analysis focused
on the physical risks to device identity and analyze various
technologies that can be employed to support it. Building upon
the knowledge presented in the preceding sections, Section IV
demonstrates how hardware can effectively support device
identity. In Section V, we reflect on the current limitations

and explore future research directions that we encountered
throughout our work. Section VI provides a summary of our
research.

Figure 2 summarizes the outline of this work.

Traditional vs Internet of
Things-based identity

management
(Subsection A)

Hardware-based Internet of
Things identity challenges

(Subsection B)

Identity on smart meters, a
case-study

(Subsection C)

Hardware trust anchors
technologies

(Subsection B)

Fault injection
(Subsection A)

Side-channel attack
(Subsection B)

Background concepts
(Section II)

Experimentation
(Section IV)

Threat analysis
(Subsection A)

Selection and deployment of
appropriate hardware trust anchors

(Section III)

Hardware security for
Internet of Things
identity assurance

Printed circuit board
level attack

(Subsection C)

Lack of standardization
(Subsection B)

Lack of software development
kit support

(Subsection A)
Challenges and future directions

(Section V)

Fig. 2: Article outline

II. BACKGROUND CONCEPTS

One of the challenges in the area of IoT is how to effec-
tively identify devices and implement secure authentication
mechanisms. These two aspects are fundamental in designing
a secure system by default, as they serve as essential building
blocks for implementing additional security features [13].

The concept of identity pertains to a set of distinct charac-
teristics that enable the recognition and differentiation of an
entity or an individual. There are numerous implementations
within various application domains [31]. For example, in the
context of human identity, it may involve biometric features
such as fingerprints or Personal Identification Numbers (PINs)
like social security numbers. Similarly, in the IoT context,
identity can be established using a unique serial number or
cryptographic key.

Authentication refers to the ability of an entity to prove that
it is genuinely the entity it claims to be. Thus, authentication
verifies the identity of an entity. In the field of cryptography,
authentication can be classified into two main categories: data
source authentication and entity authentication. Authentication
of data origin pertains to situations where it is necessary
to ensure that both the information and its source remain
unchanged. As a result, data source authentication implies data
integrity. In contrast, entity authentication involves confirming
an entity’s identity and does not include any message other
than the assertion of being a specific entity [32].

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

According to the literature, there is a lack of consensus on
whether entity authentication is equivalent to identification.
Some authors regard identification as a separate concept,
which involves asserting a specific identity without providing
conclusive evidence [32], [33]. In this study, we will use
the terms ”entity authentication” and ”entity identification”
interchangeably.

A. Traditional vs Internet of Things-based identity manage-
ment

In the context of identity and authentication, we encounter
IdM, which is the process of managing identity information
and providing authentication and access control for informa-
tion systems. IdM systems manage the relationships among
various parties, including entities, Service Provider (SP), and
Identity Provider (IdP). The entity is the one making an
identity claim, the SP offers services to the entity, and the
IdP serves three primary functions: entity registration, identity
storage, and authentication. This means the IdP is responsible
for enrolling new entities and handling the authentication
process whenever an entity seeks to access a service [34],
[35]. This pivotal role makes the IdP the core component of
an IdM system.

In the context of an IdM system, an entity can possess mul-
tiple identities distinguished by different identifiers falling into
three categories: something known only to the entity and the
IdP (e.g., a password), something possessed by the entity (e.g.,
a serial number), and a physical characteristic of the entity
(e.g., fingerprints) that can be used for identification [34].

With the growing usage of IdM systems, they started
adopting an isolated model, which represents the traditional
identity model where the SP and IdP functions are combined.
Consequently, the identification and authentication processes
are performed directly within the SP itself. Isolated models
pose a management challenge for organizations with multiple
services since each entity requires separate identities [35]. In
the case of human identity, multiple credentials are needed,
reducing user convenience and compromising overall security.

To address these issues, IdM systems began simplifying user
experiences and management by introducing the centralized
model. In this model, the SP is separated from the IdP. Mul-
tiple SPs can use the same IdP for authentication, and entities
maintain a single identity across multiple servers, making man-
agement easier. However, despite the advancements achieved
with the centralized model and its paradigms, two problems
persist. IdP servers face scalability issues as the number of
identities increases, which results in greater computational
and storage requirements. Additionally, the centralized model
does not support inter-domain authentication, which poses a
usability challenge for large enterprises [35].

The federated model resolves these issues by integrating
multiple IdPs within a single authentication domain known
as the federated authentication domain. This model is imple-
mented through a set of agreements, standards, and technolo-
gies that enable an SP to recognize identities from IdPs in dif-
ferent authentication domains or to create mappings between
identities from various IdPs [35]–[37]. Under this model,

various protocols have emerged, including Security Assertion
Markup Language (SAML) [38], OpenID Connect [39],
and comprehensive IdM systems such as Keycloak [40] and
Shibboleth [41]. It is worth noting that numerous other frame-
works and systems are available, but the ones mentioned here
are among the most commonly used and well-known in the
field [42].

The SAML [38] is an XML-based protocol for exchanging
authentication and authorization data between an SP and an
IdP, even when they belong to different authentication do-
mains. This protocol relies on the SAML Assertion message,
an XML document containing all the information required by
the SP about the entity and cryptographically signed by the
IdP. The SP uses the IdP’s public key to verify the authenticity
of the message. Shibboleth [41] leverages the SAML protocol
to implement a complete IdM solution with federated Single
Sign-On (SSO) capabilities.

OpenID Connect [39] is an authentication and authoriza-
tion framework built on top of the OAuth 2.0 authorization
framework [43]. It adds an identity layer that facilitates the
exchange of identity information [39]. This protocol employs
a REST Application Programming Interface (API) to delegate
conditional access to entity data. The entity obtains an access
token from the IdP, which the SP uses to access its identity
information. Keycloak [40] is an example of an IdM system
based on OpenID Connect.

With the increasing number of online users and accounts,
IdM models have evolved to become more user-centric. Both
protocols exemplify this paradigm. In a user centric approach,
users have control over the information exchanged between
the SP and IdP. This allows users to have different identifiers
linked to their identity, which can be shared with SPs based on
their consent. Additionally, this paradigm is explored to create
SSO experiences, where users only need to authenticate once
to access multiple services without having to re-enter their
credentials [44]. Currently, research continues to follow the
user-centric paradigm, addressing privacy concerns such as a
lack of control over the dissemination of personal data [45].
Some initiatives move away from the classic centralized model
and focus on decentralized IdMs to preserve user privacy [46]–
[48].

The need for specific IoT IdM solutions has also grown with
the proliferation of IoT devices [49]. IoT devices differ from
humans in that they lack identifiers, making it challenging to
develop solutions. The work of Lam et al. [50] outlines four
types of characteristics that can be employed to identify an
IoT device: inheritance, association, knowledge, and context.
Among these, inheritance relies the most on hardware and is
immutable, while context depends the least on hardware and
is subject to change.

The inheritance category is akin to human biometric iden-
tifiers, containing information that relies on the device’s hard-
ware and is unique to each device. Examples of identifiers in
this category include physical unclonable functions (PUFs),
which are hardware-based cryptographic primitives leveraging
random manufacturing variations to generate a unique and
irreversible response for each device. These variations are
challenging to reproduce, making PUFs resistant to cloning

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

or copying, and they serve as a robust foundation for device
authentication and identification. Further details on PUFs can
be found in Subsection III-B6 of this paper.

The association category is founded on the relationships
between devices, which are vital to their functionality. In
this category, an identifier is derived from the connections
between devices. For instance, if a wearable device relies on a
connection to a smartphone to communicate with the internet,
the smartphone can serve as an identifier for the wearable
device.

The knowledge category is akin to the ”something you
know” concept for humans. The device possesses specific
information that only it knows, such as a password or a secret
key. However, unlike human memory, the level of security
assurance differs significantly since the device needs a mecha-
nism to securely store this information, which introduces risks
like theft or hacking.

Lastly, the context category employs IoT-based sensing data
as identifiers. For instance, sensor readings generated by GPS
sensors can be considered raw sensor data. However, it is
crucial to consider the quality of context, which depends
on the quality of the physical sensor, the context data, and
the effectiveness of the delivery process. Consequently, these
identifiers may have relatively lower quality than others and
introduce challenges, such as when a device has an owner and
multiple users or when interactions with the devices evolve
over time. Both factors contribute to changes in the identifiers,
making them challenging to utilize [50].

The absence of a universal identifier for IoT devices presents
a significant challenge in the development of seamless IoT
solutions. While each resource on the Internet typically has
a unique domain name or public IP address managed by
international organizations, the lack of a standardized approach
to device identification and authentication in the IoT realm
hinders the creation of a universal solution [51]. Nevertheless,
researchers are actively working on effective methods to
authenticate and identify IoT devices.

Most IoT systems employ cryptographic-based entity au-
thentication, which means that device identifiers are used
in conjunction with cryptographic algorithms to facilitate
identity verification [52], [53]. An example of this type
of authentication is attribute-based authentication schemes,
where device attributes are used to generate a secret key
within a public-key encryption scheme. This approach allows
devices to be authenticated without the need to share secrets
like passwords or keys between the device and the server.
Instead, the device’s attributes are used to create a unique
key that only the server can replicate. Whenever the device
requires authentication, it encrypts a challenge sent by the
server using its key. The server, in turn, decrypts this message
using the expected attributes to reproduce the device key. The
device is authenticated if the server can recover its challenge
from the encrypted message [50]. Other cryptographic-based
entity authentication approaches involve the use of private
keys and Public Key Infrastructure (PKI) certificates for each
device [54], or modified versions of IdM systems tailored for
IoT, particularly when authentication of devices and users is
necessary [55].

Blockchain-based solutions are gaining popularity in IoT
security due to their decentralized and secure approach to man-
aging and storing device identities. By harnessing blockchain
technology [13], [42], IdMs systems can achieve enhanced
fault tolerance, as the distributed nature of the blockchain
ensures the absence of a single point of failure. Furthermore,
blockchain-based solutions have the potential to promote inter-
operability among devices from various brands by facilitating
the use of unique identifiers that are globally recognized and
accepted [42].

As previously mentioned, most protocols rely on asymmet-
ric cryptography and assume the availability of secure storage,
which imposes limitations on their use in IoT. Asymmetric
encryption can be overly resource-intensive for low-end IoT
processors, resulting in slow and energy-consuming encryption
operations [26], [56]. Additionally, the majority of IoT devices
lack access to secure storage due to inherent cost constraints
or the expertise required to implement such features [19].
Therefore, to continue using solutions that depend on standard
cryptographic algorithms, IoT must be complemented by hard-
ware components that streamline their execution and establish
the necessary security conditions.

B. Hardware-based Internet of Things identity challenges

Since the beginning of IoT, device identity has consistently
been identified as an ongoing research challenge [12], [57].
Considering the requirements presented in the preceding sub-
section, we can pinpoint three primary research opportunities
for IdM in IoT: lightweight cryptography [7], [8], [12], [57],
object identification [8], [12], [49], [51], [57], and secure
storage [51], [57], [58].

A significant limiting factor in IoT is its constrained re-
sources, which restrict the implementation of identity and
authentication mechanisms. Several authors have suggested
that lightweight cryptography can provide a solution to this
challenge [7], [8], [12]. Lightweight cryptography comprises
encryption algorithms or protocols explicitly designed for
resource-constrained devices. These solutions are assessed
based on criteria such as energy consumption, implementation
size, RAM, and computational power [59]. It is important to
note that lightweight cryptography does not necessarily entail
compromising security for efficiency. Some researchers aim
to develop innovative approaches to cryptographic problems
while respecting device constraints, while others work on
optimizing known algorithms and protocols to align with the
requirements of resource-limited devices [59].

Before designing any security system, it is imperative to
establish a reliable means of identifying each device. An
ideal identification solution should encompass the unique
characteristics of the device in its identification process [12].
For instance, in light of the notion that IoT devices can
connect to the Internet from virtually anywhere and at any
time, their identity should encapsulate these properties [60].
Furthermore, IoT holds the promise that devices will seam-
lessly communicate regardless of their manufacturer. However,
the absence of standardization poses a challenge to this vision.
Hence, establishing a vendor-independent identifier becomes

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

a top priority in addressing this issue. The challenge of
object identification is being tackled through two distinct
approaches. First, researchers and international organizations
are endeavoring to create a global naming scheme that multiple
manufacturers can employ to identify a device, even when it
is not directly connected to the Internet (for example, a sensor
connected to a Bluetooth gateway) [57], [60]. On the other
hand, researchers are exploring how identity can be defined by
assessing the requisite resources and available technologies.

The need for secure storage resources has grown in re-
sponse to the urgency of addressing the object identification
challenge. As previously mentioned in this section, many
identities necessitate the storage of cryptographic keys, and
regardless of the method employed, securely storing the iden-
tity on the device is a crucial requirement. Consequently,
researchers are actively seeking solutions to this issue, ranging
from creating encrypted storage to dynamically generating
cryptographic keys using the intrinsic characteristics of the
device [33], [58].

The solutions proposed for addressing identity in IoT can
be categorized into two main approaches: the utilization of
existing IdM systems with computationally intensive crypto-
graphic algorithms and the adoption of new IdM systems based
on lightweight cryptography. Hardware can play a substantial
role in either of these approaches. The technologies discussed
in this paper hold the potential to offer valuable contributions
toward overcoming these challenges.

C. Identity on smart meters, a case study
The identity of smart meters is strongly influenced by

the evolution and challenges discussed in previous sections.
Initially, smart meters began using traditional IdM systems,
such as PKIs [61], [62]. In addition, smart meters have also
implemented adapted versions of Kerberos and LDAP [62].
Kerberos is a network authentication protocol that utilizes
secret keys to authenticate clients and servers, while LDAP is
a protocol for managing the authentication and authorization
process. By adapting these protocols to the specific require-
ments of smart meters, it becomes possible to create a more
secure and efficient IdM system.

In the realm of smart metering, the implementation of PKI
relies on knowledge to establish a device’s identity. This is
achieved by assigning a private key and a signed certificate
containing the device’s information, such as model and serial
number, by the manufacturer’s trust authority. The utility
company is responsible for defining policies that ensure trust
and security among various components of the smart grid [61].
The identity of the smart meter comprises a global identifier
from the certificate and a private key.

Unfortunately, this type of solution brings multiple chal-
lenges for IoT devices. This identifier is based on knowledge,
which introduces security challenges. PKIs require that the
device securely manage its private keys, which implies the
need for secure storage and trusted computing capabilities.
These requirements are introduced by Metke et al. [61] as
prerequisites for applying PKIs to Smart Grids. Additionally,
public-key cryptography expects devices to support these al-
gorithms, which may be challenging for low-end devices [63].

Furthermore, PKIs can have functional limitations as well.
Communication channels may have limited bandwidth, as is
the case with mesh networks, making these solutions unfeasi-
ble. Finally, if these certificates are used to establish peer-to-
peer communications, mechanisms for revoking certificates are
required. Typically, PKIs use online certificate status protocols
to announce revoked certificates, but they necessitate internet
access, which may not be available in many smart grid
components [63].

Considering the challenges associated with using PKI as
an IdM solution for smart meters, researchers have proposed
alternative IdM systems to address these limitations. One
promising approach explored in recent studies involves non-
interactive key distribution [64]. This technique allows the
secure distribution of encryption keys to devices without the
need for interaction with a central authority. For instance,
Seferian et al. [65] introduced a framework that applies this
concept to smart meters.

The framework proposed by Seferian et al. [65] aims
to address some of the challenges associated with PKIs in
smart meters. It focuses on creating a more scalable way
to identify devices and manage their keys with reduced
bandwidth requirements. The scheme identifies two types of
interactions that must be secured in smart meter networks:
encryption of peer-to-peer communications between nodes and
authentication of nodes by the gateway. The framework utilizes
public data, such as the device’s MAC address, as the device’s
public key to reduce communication overhead. Its private key
is generated outside of the device by the utility company using
the device’s public key and a secret managed by the utility
company. It is then installed in the device before deployment
using a Physically Unclonable Functions (PUF) to ensure
secure storage. Each device has a PUF that can encrypt its
private key during provisioning and storage. This identity-
based key distribution framework aims to provide a more
efficient and scalable way to manage smart meter identities
and keys while reducing communication overhead.

Nonetheless, this scheme is still rooted in identity-based
cryptography, relying on cryptographic algorithms that must be
supported by the device. Furthermore, it necessitates that each
device possesses a PUF and does not provide a solution for
key revocation. When compared to the previous IdM solution,
this new approach is better aligned with the requirements of
IoT devices. It imposes lower bandwidth demands, permits the
utility company to update the device’s private key as needed,
and ties the device’s identity to its hardware. The device’s
identity in the proposed solution comprises two identifiers: a
global identifier represented by the device’s MAC address and
a private key. Unlike PKIs, the private key in this solution
cannot be categorized as a knowledge-based identifier since it
is safeguarded by the PUF. The PUF generates a unique key
based on the device’s physical characteristics. Any attempt to
tamper with the PUF would render the private key irretrievable,
thus adding an additional layer of protection. Consequently,
this private key can be classified under the association category
since it is linked to the device’s PUF.

For the remainder of this work, we will use the identity
framework proposed by Seferian et al. [65] as a reference for

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

our case study.

III. SELECTION AND DEPLOYMENT OF APPROPRIATE
HARDWARE TRUST ANCHORS

Establishing trust is a fundamental requirement for ensuring
the integrity and confidentiality of IoT devices. Hardware
trust anchors are indispensable components that guarantee the
security and reliability of cryptographic operations, providing
a strong foundation for the device’s identity and authentication.
Therefore, the critical task of selecting and deploying suitable
hardware trust anchors must not be underestimated.

This section delves into the process of selecting the ap-
propriate hardware trust anchor technologies through a com-
bination of threat analysis on the device’s identity and an
examination of available technologies. The threat analysis, is
designed to inform the reader about potential attacks and coun-
termeasures that must be taken into account while constructing
the device’s security model. The insights gained from this
analysis are then used to scrutinize trust anchor technologies,
identifying their characteristics, strengths, and limitations, thus
enabling readers to make informed decisions based on their
specific requirements.

A. Threat analysis

As previously mentioned , IoT devices are vulnerable to
hardware attacks. However, this trend can be mitigated by
designing resilient devices to withstand such attacks, which in-
volves implementing measures to protect the components and
design of the devices from physical tampering, as suggested
by Loukas et al. in their research [15].

A threat analysis is a systematic process used to identify
potential security risks and requirements for a given system.
This process typically involves four main steps: (1) system
characterization, which entails identifying the scope, bound-
aries, and functions of the system; (2) threat identification,
which involves recognizing and categorizing the possible
threats that may target the system; (3) threat mitigation, which
involves assessing and addressing the identified threats to
minimize their potential impact; and (4) validation of the threat
model, which verifies the completeness of the threat analysis
results. The ultimate goal of a threat analysis is to provide a
comprehensive understanding of the potential security risks
faced by the system and to develop effective strategies to
mitigate them.

Different strategies are available for each of these steps [66].
In this threat analysis, we will employ the Common Criteria
(CC) [67] approach, which is a standard for the security
evaluation of products. Its model refers to the product being
evaluated as the Targets of Evaluation (TOE) and defines two
key actors: the TOE owner and the attacker1. The TOE owner
is an individual who aims to mitigate the risks associated with
the TOE. This individual is responsible for characterizing the
TOE, identifying its assets (elements of value that require
protection), and its assumptions (focus of the analysis). The

1The CC refers to threat agents as attackers, and we will use the two terms
interchangeably.

attacker is an actor whose objective is to compromise the
identified assets and has characteristics that influence the
threats they impose on the assets. These threats increase
the security risks to the assets and can be minimized with
countermeasures (see Figure 3) [68]. After developing all of
these components, a TOE owner gains a clear understanding
of the threats they may encounter and how to reduce the risk
associated with the TOE.

wants to minimizeowns

TOE's owner

has

TOE

AttackerAssets

Increase

Threats

hamper

Countermeasures

Riskshas

jeopardize

protect

implement

creates

decrease

Fig. 3: Relationship between the different actors of a threat
analysis

The CC introduced a document called the Security Tar-
get [67] to express all this information in a standardized
manner. While this document provides a comprehensive and
concise depiction of the various components of a threat anal-
ysis, its strict structure and extensive requirements may pose
challenges for readers unfamiliar with the specifics of such
documents. Therefore, to overcome this potential limitation
and make the content more accessible to a wider audience,
this section will take inspiration from the format of the Se-
curity Target as proposed by the CC, while making necessary
adaptations to streamline and simplify its content.

The primary aim of this section is to investigate the
measures that can be implemented to ensure the secure
identity of a device. This investigation includes identifying
potential threats and corresponding countermeasures, as
well as exploring the security context of a specific case
study - smart meters. To achieve this objective, this section
is structured as follows: firstly, we will characterize the
TOE and outline a set of assumptions that will guide our
analysis. Subsequently, we will identify the assets of the
TOE, enumerate the possible attackers, and describe their
capabilities and motivations. Finally, we will examine the
threats these attackers may impose upon the device and
propose appropriate countermeasures.

1) System characterization and assumptions:
IoT devices can be broadly divided into two major com-

ponents - hardware and software. While hardware attacks
are directed toward the device’s hardware, it is essential to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

note that the relationship between the hardware and software
components also makes the latter vulnerable to such attacks.
As a result, any successful hardware attack has the potential to
significantly impact the software and overall functionality of
the IoT device. This underscores the importance of ensuring
the security of IoT devices’ hardware and software compo-
nents to prevent attacks and ensure optimal performance.

Like any computer, IoT hardware features a CPU that pro-
vides computational capabilities, RAM for program storage,
Read Only Memory (ROM) housing the boot program con-
nected by a CPU bus, and multiple buses for peripherals, such
as persistent storage. However, unlike traditional computers,
IoT devices consolidate all these components on a single chip
known as a System On a Chip (SoC) [69]. Additionally, an
IoT device includes a Printed Circuit Board (PCB), which
facilitates the soldering of various components and establishes
reliable electrical connections between them.

Smart meters are typically more complex devices with
multiple SoCs that share the same PCB [30], [70]. One of
the SoCs is responsible for measuring electricity consumption,
while the other interacts with the external environment, such
as communicating via radio with the utility company [71].
The latter SoC manages interactions between the device and
its external environment and is, therefore, responsible for
operations related to the device’s identity.

In IoT devices, firmware plays a pivotal role in device
functionality. Firmware refers to embedded software within a
hardware device. Before any software on a device operates, the
bootloader is the initial software to run. This bootloader may
exist in on-chip ROM, meaning it is hardcoded into the SoC, or
it may reside in external memory. Its primary responsibility is
initializing various device components and transferring control
to the user image. Notably, some SoCs may be equipped with
multiple bootloaders to offer added flexibility.

The user image in an IoT device can either be an embedded
OS, such as a Real-Time Operating System (RTOS), or a
bare-metal application [72]. In the case of an embedded OS,
the OS manages various processes and events and includes a
hardware abstraction layer (HAL). Moreover, the embedded
OS is responsible for executing applications. Conversely, if a
bare-metal application is loaded, the application must handle
and interact directly with the hardware. The choice between
an OS and a bare-metal application depends on the device’s
capabilities.

The proper functioning of a device relies on the inter-
dependence between its software and hardware components.
A defective element within either of these components can
render the device inoperable. In the event of a compromised
software stack, it does not necessarily imply that the hardware
has been compromised. Conversely, hardware attacks can lead
to software compromise. Additionally, software vulnerabilities
can often be patched through over-the-air (OTA) updates,
while hardware vulnerabilities necessitate a new hardware
revision for a resolution. This means that certain devices may
never receive a fix for hardware vulnerabilities [17]. Hardware
attacks require specialized knowledge and tools. Consequently,
devices that do not require high assurance do not minimize
these risks. Furthermore, security certifications that address

these threats do not assess whether the risks are fully mitigated
but evaluate whether the device has countermeasures to disrupt
and delay the attacker [73].

In the context of device security, any of its components
can serve as an entry point for compromising its identity.
While software attacks may not directly impact the device’s
identity, they may target the authentication protocol or
necessitate further exploits and lateral movement to attack
it. To maintain the focus of this work on identity assurance
through hardware, we will only address identity threats
related to hardware, including hardware attacks and attacks
that hardware can mitigate. These threats will help establish
the security features and capabilities of the components
discussed in Subsection III-B. Moreover, in this analysis,
we assume that the attacker possesses complete physical
access to the device and an indefinite amount of time to
carry out the attack. Additionally, we will only consider the
availability requirement for any asset we identify since we
assume that, with physical access, the attacker can render a
service unavailable by disconnecting the device from power.

2) Assets:
In a threat analysis, an asset is something that holds value

for the company and must be protected. For example, in the
case of a pay-TV network, a smart card with a decryption key
that controls access to the network is considered an asset as
it plays a crucial role in the company’s revenue [74]. In our
threat analysis, there is no specific TOE defined. However, we
will focus on the technical assets required to establish identity
and authentication and their relevance to our case study.

As we stated at the beginning of Section II, identifiers are
essential for supporting the identity of IoT devices. We have
listed four identifiers: context, association, knowledge, and
inheritance. Context identifies a device by analyzing its rela-
tionships with other devices and its environment. Association
signifies a symbiotic relationship the device has with a compo-
nent or another device. In contrast, knowledge and inheritance
rely solely on the device’s characteristics to establish identity.
The inheritance category uses hardware characteristics, while
the knowledge category encompasses information that only the
device knows, such as an authentication token or cryptographic
key. Therefore, these last two identifiers are susceptible to
compromise through hardware attacks. Additionally, hardware
attacks can also endanger identifiers from the association
category.

In our case study, we have two identifiers: a MAC address,
which serves as a global identifier and falls under the knowl-
edge category, and the device’s private key, which belongs to
the association category due to its symbiotic relationship with
the device’s PUF. The MAC address functions as a public key
and, as such, does not require any confidentiality requirement.
However, it must remain unchanged to maintain its integrity.
On the other hand, the device’s private key must ensure both
confidentiality and integrity.

Furthermore, since the device’s private key is securely
stored using a PUF, attackers may attempt to clone the device
to steal its identity. Therefore, the Integrated Circuit (IC)
design and the device’s firmware must remain confidential.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

Additionally, attackers may also attempt to tamper with the
device to bypass security features, so the IC design must
protect its integrity.

Regarding firmware integrity, the primary security objective
is to prevent the execution of unauthorized code. This is
crucial because even if the device’s identity remains secure,
an attacker who can execute unauthorized code can perform
actions using the device’s identity. Ensuring the integrity of
firmware, requires consideration of three attack vectors that
can compromise security. Firstly, the attacker should not be
able to modify the firmware when it is stored in persistent
storage. Secondly, if the persistent storage is compromised,
the device must not execute any tampered instructions. Finally,
the attacker should not be able to induce temporary changes
in the execution of instructions.

Moreover, it is important to consider any secret encountered
within the device as an asset, not only those related to the de-
vice’s identity. These secrets may include other cryptographic
keys, authentication tokens, or passwords that are not directly
used as identifiers but play a role in keeping information secure
or authenticating data traffic. For example, public keys are
typically used to verify the authenticity of traffic and Over-
the-air (OTA) updates. If a public key is altered, it can disrupt
the signature verification process, leading to various attacks,
from Man-In-The-Middle (MITM) to malicious OTA updates.
Therefore, for secrets like public keys, at the very least,
integrity must be addressed. In other cases, both confidentiality
and integrity need to be ensured.

To conclude, devices must secure three assets : IC design,
firmware, and secrets, to protect the device’s identity and
authentication capabilities.

3) Attackers:
Many techniques presented throughout this section require

expensive equipment, in-depth system knowledge, and exe-
cution time. Therefore, not all are accessible to all potential
attackers. A threat agent can be either a person or a group
that poses a threat [75]. Threat agents can be characterized
based on their capabilities and motivation. The capabilities
of threat agents encompass the combination of resources and
knowledge available to carry out an attack. The threat agent’s
motivation relates to their desire to perform a particular action
and their expectations of success (confidence) [76]. The threat
agent’s motivation level is tied to the time and effort they are
willing to invest. A less motivated attacker in more likely to
abandon their target quickly if the device has numerous coun-
termeasures that require time to circumvent. IoT devices face
threats from five primary threat agents: criminal enterprises,
industrial competition, nation-states, ethical hackers, and lay
attackers [17].

Criminal enterprises are primarily motivated by financial
gain resulting from an attack. These organizations typically
target vulnerabilities that offer tangible benefits for their
illegal activities. For instance, they may exploit remote code
execution vulnerabilities in IoT devices to enhance the ef-
fectiveness of their botnets for conducting distributed denial
of service attacks. Due to their characteristics, these entities
allocate substantial funds for such attacks. However, their

illegal status restricts their ability to acquire human resources
and equipment. Given this situation, malicious entities may
attempt to launch attacks against smart meters, with the
goal of distributing tampered devices that produce inaccurate
measurements or even holding a smart meter hostage as a form
of ransomware, demanding payment from utility companies to
restore energy services to their customers.

Industrial competitors seek a competitive advantage by
acquiring information about their rivals’ devices. This involves
reverse engineering the device to uncover its internal workings.
Such attackers have access to a highly skilled workforce and
substantial financial resources to obtain all the necessary tools
and equipment for executing an attack.

Nation-states have motivations such as espionage and sab-
otage. This group possesses all the necessary means to carry
out complex attacks, including an abundance of professionals,
tools, and ample planning time. In the past, nation-states have
targeted power grids in the context of cyber warfare. Therefore,
smart meters are a prime target for this kind of initiative since
they could disrupt the power grid in a distributed manner [77].

Layperson attackers are typically individuals or small
groups that engage in hacking to extort money from companies
or gain a reputation. These groups generally have limited
resources and expertise, so they will seek other targets if they
encounter effective countermeasures.

Ethical hackers are driven by curiosity about how a system
works or the possibility of monetary rewards. Unlike lay
attackers, they do not seek illegal ways to make money but
opt for legal initiatives, such as bug bounties. They may
possess the expertise to carry out complex attacks but often
have a limited budget and time. At the same time, they can
access more expensive equipment through universities and
hackerspaces. Compared to other attackers, ethical hackers
pose a different type of risk. They do not intend to harm a
company. However, if not handled properly, they can impact
consumer trust in a company. If a vulnerability in a well-
known company is disclosed before it is resolved or properly
explained by the company, customers may lose trust in the
company.

Table I summarizes the motivation and capabilities of each
attacker. The attacker’s capabilities are analyzed based on two
characteristics: knowledge, and resources, which are classified
as low, moderate, and extensive. Similarly, motivation is
classified as low, high, and extreme based on each attacker’s
level of persistence. These characteristics directly influence the
types of attacks each attacker can execute.

Attackers Capability MotivationKnowledge Resources
Criminal
enterprise Moderate Moderate High

Industry
competition Extensive Extensive High

Nation-states Extensive Extensive Extreme
Ethical
hackers Moderate Moderate High

Layperson
attackers Low Low Low

TABLE I: Attacker characterizations

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

4) Threats and possible countermeasures:
Hardware attacks can be categorized into two main types

based on their physical impact on the device: invasive and
non-invasive. Non-invasive attacks do not require any prior
preparation of the device, which means the attacker can
access all necessary components without modifying the device
and without leaving any evidence of tampering. In contrast,
invasive attacks are more destructive and entail the removal
of the chip package to target the internal components. These
types of attacks demand expensive tools, complex techniques,
and the ability to operate at a miniature scale. Furthermore,
many invasive attacks can result in the destruction of the chip
itself.

In addition to these categories, some authors have proposed
an intermediary class between non-invasive and invasive at-
tacks, referred to as semi-invasive attacks [78], [79]. Semi-
invasive attacks are a subset of invasive attacks that involve
removing the chip package but do not require contact with
its internal lines, reducing their complexity. For the sake of
simplicity in this work, we will not distinguish these attacks
from invasive attacks.

Another way to categorize these attacks is based on their
objectives. This taxonomy classifies attacks into three main
categories [79]: reverse engineering, fault injection, and
side-channel attacks. Each of these categories encompasses
multiple attack techniques (see Figure 4).

In this section, our aim is to identify potential threats and
present countermeasures that a device can employ to hinder
their exploitation. These countermeasures can be implemented
in either software or hardware, but we will primarily focus
on hardware-based solutions.

Reverse engineering
Reverse engineering is the process of analyzing a fully func-
tional system to develop specifications describing the sys-
tem [80]. In the context of IoT, reverse engineering focuses
on two main areas: hardware (components and PCB) and
firmware. Attackers seek to gain a comprehensive understand-
ing of the device’s inner workings, identify vulnerabilities, or
create device clones.

To reverse engineer a device’s hardware, attackers often
employ invasive techniques. These techniques include decap-
sulation, depackaging, and delayering, which use chemicals to
dissolve the chip package. Decapsulation partially dissolves
the package while keeping the chip functional, whereas de-
packaging completely removes the package, rendering the
chip non-operational. Delayering involves removing individual
layers of the chip for in-depth analysis. These techniques allow
attackers to expose the chip, making it possible to analyze
it using high-resolution images or Scan Electron Microscope
(SEM). [81].

Incorporating active metal shields [82] or a defensive PCB
design pattern [83], [84] can deter decapsulation and SEM-
based attacks. Active metal shields are conductive layers in the
PCB that shield crucial circuit elements, and they can range
from simple conductive layers to complex meanders of con-
ductive lines with resistance sensors for detecting tampering
attempts. Defensive PCB designs employ various techniques,

such as routing critical signals on deeper PCB layers, overlap-
ping them with other electrical paths, or introducing structural
obstacles to disrupt the device’s operation [83]–[85].

These techniques can also be applied to reverse engineering
embedded memory to extract stored information. For instance,
information stored on a masked ROM can be decoded, af-
ter decapsulation using an optical microscope. Additionally,
techniques like microprobing can monitor buses to extract
information or bypass encrypted buses by reverse engineering
the chip design [86].

Microprobing entails attaching probes inside a chip to
measure (side-channel attacks and eavesdropping) or inject
voltage (voltage glitching) into an electrical line. However, mi-
croprobing requires a decapsulated chip, making it an invasive
technique and sometimes necessitating probe pad creation with
a Focused Ion Beam (FIB) [17]. FIB involves using a beam of
ions to either remove parts of a chip or deposit material. With
FIB, attackers can cut or reroute wires at a nanometer scale.
While microprobing and FIB techniques are complex, they
can bypass many hardware security measures, including active
shields, when executed successfully. FIB can be used to tamper
with a chip or support other attacks [17], [87]. The success of
microprobing depends on the preceding chip decapsulation. A
defensive PCB design that obstructs access to critical signals
can impede microprobing techniques.

Eavesdropping is the act of passively intercepting informa-
tion from buses connecting the device’s components. Using
microprobing for eavesdropping makes this an invasive at-
tack [88]. If buses are exposed, the attack can take a non-
invasive form, as an attacker can simply attach a logic analyzer
to the bus. Regardless, the attacker must reverse engineer the
signals and convert them into meaningful information.

A defensive PCB design can thwart simpler forms of eaves-
dropping attacks by ensuring that critical signals are not routed
on the top or bottom PCB layers. This forces the attacker to
use invasive techniques like decapsulation and microprobing
to achieve the same goal: eavesdropping on a signal. For
critical device signals, designers should evaluate the need for
encryption [84].

When attackers aim to reverse engineer firmware, they
must first obtain it from the device. Attackers can leverage
their access to the device’s hardware to perform PCB or
logical attacks. The PCB interconnects the various device
components. To extract the firmware, an attacker may try to
directly connect to persistent external storage using probes
or desolder the memory and use a debug tool to read it. If
successful, the attacker can write a tampered version of the
firmware to the device. Another approach involves analyzing
the PCB connections to discover possible features that elec-
trical connections can unlock. SoC devices are often bootable
with security features disabled by grounding or pulling up
logical pins.

Logical attacks exploit logical interfaces to communicate
directly with device firmware, bypassing all hardware security
features. Many IoT devices have exposed logical ports like
Joint Test Action Group (JTAG), Serial Wire Debug (SWD),
or Universal asynchronous Receiver/Transmitter (UART) that
allow direct interaction with firmware or attachment of a

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

Invasive Non-invasive Non-invasive or
Invasive

Hardware attacks

Voltage glitiching

Fault injection

EM disturbances Optical disturbances

Side channel
attacks

Power
analysis

EM
emissions

Timing
attacks

Optical emission
analysis

Logical interface
attacksSEM Decapsulation

Reverse engineering

PCB level attacks

Chip and PCB

Depackaging

Delaying

Firmware

Legend:

Fig. 4: Taxonomy of hardware attacks

debugger. While these ports can be disabled in software, they
are often left enabled. If an attacker can communicate with
the JTAG or SWD interface successfully, they can extract the
firmware and interact with its execution. In the case of UART,
further exploitation may be required to obtain the device’s
firmware.

Once an attacker has access to the device firmware,
the reverse engineering process resembles software reverse
engineering. However, researchers must understand the
device’s architecture and how the firmware interacts with the
hardware, as these aspects are often overlooked due to the
abstractions provided by OSs.

Fault injection
Fault injection refers to an attack method in which deliberate
processing errors are introduced into a processor. These errors
are designed to manipulate the normal execution of instruc-
tions or alter the data stored in registers within the processor.

There are multiple ways to create these faults. The more
common ones are voltage glitching, electromagnetic (EM)
interference, and optical disturbances, often referred to as laser
glitching. These attacks are generally non-invasive, except
for optical disturbances, which qualify as invasive attacks.
However, their shared objective remains consistent, even as
the attack vectors differ.

Voltage glitching is a technique employed by attackers to
rapidly manipulate the voltage of a device’s components in
order to disrupt its normal operation. By inducing sudden
changes in voltage, the attacker aims to affect the device’s
functioning, potentially exploiting vulnerabilities or gaining
unauthorized access. This attack targets a device’s power
supply or clock signal. Unlike invasive methods, this attack
does not require physical modifications to the component’s
package. Instead, it involves manipulating the voltage or
timing characteristics externally to disrupt the device’s normal
operation and potentially exploit security vulnerabilities. This
attack aims to push the hardware to induce an error in the
software.

An illustrative example of this type of attack is documented
by Colin O’Flyn [89]. In this case, the author used a paper
clip to perform a power glitch on a Philips Hue Bridge
2.0’s Electrically Erasable Programmable Read-Only Memory

(EEPROM) to interrupt the communication between the mem-
ory module and the processor. By introducing a deliberate fault
in the communication between the memory module and the
processor, he could interact with the locked bootloader shell. It
is worth noting that while this example showcases a relatively
simple attack, many fault injection attacks are more intricate
and aim to manipulate the processor to divert its execution
flow or change the content of registers in more sophisticated
ways.

Usually, voltage glitching is a non-invasive technique. How-
ever, it can also be performed at a nanometer scale by attacking
voltage lines inside a chip, a process known as microprobing.
Unlike the non-invasive approach, microprobing involves the
invasive process of decapsulating the chip. This means the
chip’s protective packaging is removed to gain direct access
to its internal components. Consequently, microprobing turns
the attack into an invasive one.

EM disturbances occur when an attacker intentionally gen-
erates EM signals and directs them toward a target system to
induce faults. This is possible because changes in a magnetic
field near a chip induce alterations in the voltage, which can
temporarily cause flips in the logical levels of a data line.

Optical disturbances leverage the fact that when a transistor
is illuminated with a photon-intense light pulse, it conducts
current, which can be used to generate localized faults. This
attack requires the decapsulation of the component and lasers
to emit light pulses.

Fault injection attacks jeopardize the code integrity of the
device by executing the code in an unintended way. These
attacks are momentary and not persistent by nature but can
be leveraged to produce persistent errors, for instance, by
attacking the storage interface [90]. Overall, fault injection
attacks require knowledgeable and highly motivated attackers
since these attacks need to be tuned by experimentation
according to the target hardware, which is time-consuming.
Moreover, EM and optical disturbances involve high voltages
and lasers, which can harm the attacker if the necessary safety
measures are not taken.

Generally, devices can prevent this type of attack by ap-
plying software or hardware countermeasures. In the realm of
software development, there are various recommendations that
developers can implement to increase security. For instance,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

random delays can be added to the code to deflect exploitation,
or critical information may be checked multiple times during
execution (for instance, two copies of the same information
stored in different memory regions) to detect any exploitation
attempt [91]. The duplication principle may also be applied
to hardware. For example, the device can implement the same
function in multiple places and compare their output to detect
tampering attempts. Nevertheless, this type of approach is
expensive [85].

In addition to these general countermeasures, specific
techniques exist for each threat. Devices may have voltage
sensors or monitor the clock signal to detect voltage glitching
attacks [92], [93]. Power or clock lines are distributed across
the PCB, meaning that any attack targeting these lines will
propagate throughout the entire network of lines, making
it relatively easy to detect such attacks. In contrast, EM
attacks tend to be localized, making them more challenging
to detect [94]. EM sensors may be used to detect EM fault
injections [93], [95]. However, their placement must be
properly analyzed due to their limited range. On the other
hand, EM fault injections can be avoided by using an active
metal shield that protects the SoC from EM waves and optical
disturbances [85], [96].

Side-channel attacks
Side-channel attacks constitute a class of non-invasive attacks
aimed at extracting confidential information from a system by
analyzing various physical parameters, such as time, power
consumption, or EM emissions [97]. Most of these attacks
necessitate knowledge of both the plaintext and corresponding
ciphertext.

Timing attacks capitalize on data-dependent execution time
differences to uncover secret data [97]. Let us consider a
scenario where a password verification system compares an at-
tacker’s input with the correct password character by character.
During this process, the system provides timely feedback on
the correctness of each character. In this situation, an attacker
can measure the time it takes from entering a password to re-
ceiving feedback. By carefully measuring these time intervals,
the attacker can exploit variations in execution times, which
depend on the number of correct characters in their input. This
knowledge enables the attacker to optimize a brute-force attack
strategy. Instead of attempting to guess the entire password in
one go, the attacker can iteratively and efficiently brute-force
each password character. This is achieved by leveraging the
different execution times associated with the varying number
of correct characters, significantly reducing the effort required
to crack the password. Depending on the target, an attacker
may measure the time taken by a software system to respond to
specific inputs or operations [98] or count CPU cycles [99]. To
mitigate this threat, developers must address it at the software
level. One approach is to ensure consistent response times
regardless of the correctness of the input. By implementing
measures that maintain uniform timing and response patterns,
developers can minimize information leakage through side
channels and enhance the system’s overall security.

The power consumption of a processor depends on its
current activity, particularly when there are changes in the state

of its components. Precise measurement of power consumption
allows an attacker to identify the current instruction and
estimate changes in memory bits [78]. Many power analysis
techniques can be employed to attack cryptographic systems,
with the two primary techniques being Simple Power Analysis
(SPA) and Differential Power Analysis (DPA) [78].

SPA involves direct observation of power consumption
and demands the attacker’s specific knowledge of the cryp-
tographic algorithm implementation to succeed. DPA is a
technique that does not require prior knowledge, relying on
statistical analysis to extract information from a data set
of power traces [100]. Despite not necessitating expensive
equipment, power analysis does require a skilled attacker.

An example of power analysis utilization is featured in
the work of Ronen et al. [101]. In this study, a team of
researchers used power analysis to extract the cryptographic
keys responsible for encrypting and verifying firmware up-
dates in a smart bulb. This analysis subsequently allowed the
authors to upload a malicious OTA update, compromising
the integrity and security of the device. To prevent these
attacks, boards may employ voltage regulators to maintain
steady power consumption independently of running opera-
tions. However, attackers may bypass this by probing inside
the chip (microprobing) [93]. This process, though, would
require decapsulation.

Integrated Circuits emit electromagnetic waves during their
operation. The principle behind EM analysis is quite similar to
power analysis. By using EM probes, it is possible to identify
events by analyzing the EM signals around a device. Moreover,
in EM analysis, you can also pinpoint the location of a specific
activity by locating the source of that radiation, a capability
not available in power analysis. Several techniques exist to
analyze these measures, with the main ones being simple EM
analysis and differential EM analysis, similar to their power
analysis counterparts [97].

Optical emission analysis focuses on studying emitted pho-
tons by transistors that change state. Once again, there are two
main techniques: simple and differential analysis [102], which
can be used to extract cryptographic keys. Additionally, optical
emission analysis allows attackers to locate the source of pho-
ton emissions, supporting reverse engineering efforts. These
attacks require direct observation of the chip’s components
, which necessitates chip decapsulation. Furthermore, these
attacks require custom-built tools, increasing the knowledge
required to execute them [17], [103].

One possible mitigation for EM and optical emission anal-
ysis is to use an active metal shield to protect critical com-
ponents. These shields hinder EM and optical injections and
prevent internal emissions from propagating to the outside,
thus preventing leakages [85], [104].

Software developers can implement measures, such as in-
troducing random delays during critical operations, to mitigate
the risk of successful side-channel attacks [91]. These delays
disrupt timing patterns, making it harder for attackers to gather
information. By incorporating random delays, the timing side-
channel becomes less reliable as an avenue for exploitation.

Side-channel attacks primarily affect the confidentiality
of identity data. The actors who perform these attacks

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

Threats
Identity assets Required capabilities

Hardware countermeasureSecrets Firmware Integrated circuit design Knowledge Resources MotivationConfidentiality Integrity Confidentiality Integrity Confidentiality Integrity

Voltage glitching No No No Yes No No Moderate Low High - Voltage sensors
- Clock signal sensors

Electromagnetic disturbances No No No Yes No No Moderate Moderate High
- Multiple voltage sensors
- Active metal shield
- Electromagnetic sensor

Optical disturbances No No No Yes No No Extensive Extensive High - Active metal shield
Timing attacks Yes No Yes No No No Moderate Low High
Power analysis Yes No No No No No Moderate Low High - Voltage monitoring
Electromagnetic emissions analysis Yes No No No No No Moderate Low High - Active metal shield
Optical emission analysis Yes No No No No No Extensive Extensive High - Active metal shield

Scanning electron microscope No No No No Yes No Extensive Extensive High - Active metal shield
- Defensive printed circuit board design

Decapsulation No No No No Yes Yes Extensive Extensive High - Active metal shield
- Defensive printed circuit board design

Depackaging No No No No Yes Yes Extensive Extensive High - Defensive printed circuit board design
Delaying No No No No Yes Yes Extensive Extensive High - Defensive printed circuit board design
Printed circuit board level attacks Yes Yes Yes Yes No No Low Low Low
Logical interface attacks Yes Yes Yes Yes No No Low Low Low
Eavesdropping Yes no Yes no No No Moderate Low Low - Defensive printed circuit board design
Microprobing NA NA NA NA NA NA Extensive Extensive High - Defensive printed circuit board design
Focused ion beam NA NA NA NA NA NA Extensive Extensive High

TABLE II: Relation between threats, assets, and required capabilities

require extensive knowledge of statistical analysis and the
target’s cryptographic implementation. In terms of resource
requirements, time, power, and EM emission analysis share
a common need for equipment such as oscilloscopes and
appropriate probes. However, optical emission analysis
deviates from this requirement, as it necessitates specialized
equipment and the process of chip decapsulation.

5) Summary:
In this section, we have examined how hardware-based

attacks can pose a threat to the identity and authentication
capabilities of IoT devices. We have discussed the various
security objectives needed to maintain the security of IoT
identity and authentication. Additionally, we have provided a
comprehensive list of potential attacks that could be used to
compromise these devices, accompanied by a detailed analysis
of the knowledge and resources required for each attack. These
insights play a crucial role in understanding the tactics that a
specific threat actor may employ to compromise IoT device
security.

Table II summarizes the various attacks by mapping the
requirements needed for the attacker to succeed. Additionally,
it identifies the compromised assets and outlines hardware
countermeasures. In this table, we included microprobing and
FIB as they can be applied to multiple attacks and significantly
affect the requirements.

In the following subsection, we will use the identified
countermeasures and attacks to assess the security level of
each technology against hardware attacks.

B. Hardware trust anchors technologies

We have identified six key technologies that serve as
fundamental building blocks for addressing the current open
research challenges in IoT: True Random Number Generator
(TRNG)s, ROMs, crypto accelerators, Secure Element (SE)s,
Trusted Execution Environment (TEE)s, and PUFs. In the
following sections, we will examine the advantages and dis-
advantages of each of these technologies in supporting device
identity. We will also analyze prevalent security attacks and
the commonly implemented countermeasures. Furthermore,

we will explore the systems in which these technologies have
already been employed to facilitate device identity.

Before analyzing each one, it is essential to consider
their nature and relationships. These technologies can be
categorized into two distinct groups: basic and composite
building blocks. Basic blocks provide elementary resources,
while composite blocks offer multiple resources, and can be
broken down into smaller building blocks. For instance, a
TRNG is a basic block that solely provides random numbers.
On the other hand, a SE is a composite building block because
it offers various features such as cryptographic operations
and random number generation, which are provided by basic
blocks, like a cryptographic coprocessor and TRNG.

1) True random number generator:
Encryption serves as the foundation of identity and authenti-

cation solutions. These systems heavily rely on the generation
of unpredictable and non-reproducible key streams for cryp-
tographic key creation and the generation of authentication
challenges, among other essential functions. There are two
primary types of random number generators: True Random
Number Generator (TRNG) and Pseudorandom Number Gn-
erator (PRNG). However, PRNGs are not recommended for
cryptographic operations due to their lack of entropy [105].

A TRNG is a random number generator capable of pro-
ducing truly random numbers, free from any predictable
patterns or periodicity, derived from physical sources. What
sets TRNGs apart from the PRNGs commonly used in most
systems is the quality of the generated numbers. A PRNG
employs algorithms to generate a sequence of numbers that
depend on an initial seed provided to the algorithm. The
numerical sequence generated by a PRNG is deterministic,
meaning that if the seed is known, an attacker can calculate
the entire PRNG sequence.

On IoT devices, the generation of seeds for cryptographic
purposes often faces limitations in terms of available entropy
sources. Additionally, attackers can gain physical access to
the device, potentially disrupting these sources. As a solution
to these challenges, TRNGs can be employed to extract
entropy from the device’s environment, such as electronic
noise [26]. An example of this electronic noise is the variations

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

in signals produced by electronic oscillators, which can be
sampled, filtered for potential interference, and quantified as
digital bits [106]. However, constructing such TRNGs may
require the use of multiple oscillators to produce high-quality
random numbers [105], which can increase production costs
and energy consumption [26].

Electronic noise, however, can be susceptible to external
interference, which may affect the quality of the generated
random numbers. To address this issue, researchers have
turned to quantum theory to develop new TRNG constructions.
In quantum mechanics, each choice is inherently random and
independent of others. Based on this principle, researchers
have utilized methods such as analyzing the choices of
individual photons or measuring the time intervals between
the radioactive decay of elements to create TRNGs [107].

Security attacks and countermeasures
TRNGs, typically embedded within a device, often do not

incorporate their own security countermeasures but delegate
this responsibility to the device itself. Depending on the type
of TRNG, some attacks may exploit environmental biases
inherent in these components, potentially leading to the
generation of weak random numbers. For example, TRNGs
based on Ring Oscilator (RO)s can be biased with EM fault
injections [107], and attackers may perform EM side-channel
analysis to retrieve information about the TRNG’s internal
state [108].

Advantages and disadvantages for identity assurance
IoT devices commonly face challenges related to a lack

of available entropy. In this context, TRNGs can provide
a solution by offering high-entropy numbers within an
IoT platform. However, TRNGs also come with notable
drawbacks. These drawbacks include increased device costs
and higher power consumption. Additionally, conventional
TRNGs that do not rely on quantum physics may be
susceptible to environmental biases. This vulnerability
implies that adversaries with physical access to the device can
exploit such biases and launch attacks against the generated
random numbers.

Implementations
TRNGs are often included as a foundational component

within more complex systems. For instance, any identity
system that utilizes a Trusted Platform Module (TPM) or SE
inherently relies on a TRNG since TRNGs are a fundamental
part of these components. An explicit example of TRNG use
in identity systems is demonstrated in the work of Yang Su et
al. [109], where a decentralized machine identifier for electric
vehicles was developed using a TRNG module to generate
vehicle identification.

2) Masked read-only memory and one-time-programmable
memories:

Non-Volatile Memory (NVM) is a type of memory used in
devices to store information persistently. Different families of
NVM distinguish themselves by the technology they employ
and the number of times they can be rewritten. Among the

various types, those allowing only a single write operation
can be used to support security operations in a system. For
example, they can be employed to implement a RoT or store
public keys [110].

There are four types of one-time writable memories: masked
ROMs, floating-gate One-Time-Programmable (OTP)s, fuse
OTPs, and anti-fuse OTPs. The last three are collectively re-
ferred to as OTP memories because they can be programmed in
the field, offering more flexibility compared to a masked ROM,
which can only be set during the fabrication process [111].

Masked ROMs have the information hardwired into the chip
design, requiring knowledge of the data to be stored before
the component’s production. This type of memory offers a
significant advantage in terms of low production costs when
a large quantity of memories storing the same information
is needed. However, it can be a disadvantage for small-scale
deployments [110], [112].

Floating-gate memory is a type of memory that utilizes
floating-gate transistors to store information, enabling it to
be reprogrammed and erased in the field [113]. This is
possible because the packages of these memories have a
quartz window that can be uncovered to irradiate the floating-
gates with ultraviolet (UV) radiation, effectively erasing the
memory [110]. Floating-gate OTPs follow the same working
principle as floating-gate memories but have the floating-gates
shielded to ensure they are not reset by radiation.

Electric-Fuse (eFuse) OTP memory is constructed with a
set of fuses that are blown to represent data. This operation
is performed by applying a high voltage to the fuse, which
can be done in the field [114]. The working principle behind
an eFuse is electromigration, a process in which material
is gradually transported in a conductor. eFuses consist of
conductive metal lines that increase their resistance when
exposed to high voltages, causing the circuit to open due to
electromigration [115]. However, in terms of data retention,
electromigration introduces disadvantages, as eFuses are sus-
ceptible to re-growth issues, where metal lines unintentionally
connect, altering the stored data [116].

Anti-fuse OTP memory is a variant of fuse OTP that incor-
porates an anti-fuse element in its construction. An anti-fuse
is an electronic component designed to exhibit non-conductive
behavior under normal conditions. However, when subjected
to high voltage, it undergoes a permanent transformation,
becoming conductive. This transition is used as a means to
store information in memory permanently [114].

Finally, table III summarizes the differences between read-
only and one-time-programmable memories.

Security attacks and countermeasures
The primary objective of read-only memories is to make

data unchangeable. With the exception of floating-gate OTPs,
there are no known attacks against this type of memory.
However, as mentioned earlier, since floating-gate OTPs are
based on floating-gate memories, attackers may attempt to
bypass their shield and expose them to UV radiation to
overwrite the data [117]. Even though eFuses suffer from re-
growth issues, no literature has been found exploiting this fact
to create an attack to compromise the OTP.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

Technology Pros and cons

Masked ROM
+ Hardwired data
− Programmed during manufacturing

Floating-gate OTP
+ Programmable after manufacturing
− Vulnerable to ultraviolet attacks

eFuse OTP
+ Programmable after manufacturing
− Limited data retention

Anti-fuse + Programmable after manufacturing

TABLE III: Comparison between different memory technolo-
gies

However, given that these memories often contain
information that could be of interest to an attacker, it is
essential to assess how easily the stored information can
be retrieved. The discussed memories share very similar
protection levels. To access the information, an attacker
would need to depackage and delayer the chip, then employ
a high-resolution optical microscope to read its content [86],
[117]–[119]. Another option is to use an SEM to retrieve
the information, though this is not possible for anti-fuse
OTPs [115]. All these techniques are invasive, requiring
expensive equipment and manual work to extract the memory
data. To mitigate these risks, device designers often employ
active shields to protect the memories, erasing their content
or damaging the device if any tampering attempt is detected.
However, if not backed up by batteries, this protection will
only function when the device is powered on and will not
prevent offline attacks.

Advantages and disadvantages for identity assurance
Masked ROM and OTP memories offer cost-effective

options to store information that can only be read.
Nevertheless, they also come with several security risks
that must be addressed for high-assurance deployments. An
attacker with physical access to the device can replace these
memories with similar ones containing different content, as
devices typically lack mechanisms to ensure the integrity
of the memory itself. Furthermore, specific attacks can be
leveraged for each memory type to alter their content [118],
[120]. As a result, masked ROM and OTP memories bring
advantages for systems requiring low-security assurance.
However, these security risks must be mitigated if these
components are used for higher assurance levels.

Implementations
Masked ROM and OTP memories are foundational

components in more complex systems. One of the most
common uses of these memories is to provide a RoT,
which is why they are included in most SEs [121]. More
recently, researchers have employed these components as
RoTs in the ARM Trust Zone system, as they do not provide
a default secure way to store information [122]. Another
application for these memories is enabling and disabling
features in a device. For example, many SoCs use fuses to
disable debug capabilities, such as a JTAG or UART port [19].

3) Crypto accelerators:
Crypto accelerators exhibit a remarkable capacity for per-

forming cryptographic operations at a high throughput rate.
It is worth noting that these components may or may not
include countermeasures to mitigate known attacks. In the
literature, they go by various names, such as custom processors
and crypto arrays, as discussed in the work by Bossuet et
al. [123]. Following the taxonomy presented by Bossuet et
al., we categorize these components into four types: General
Purpose Processor (GPP)s with crypto acceleration, hardware
crypto-coprocessors, crypto-processors, and crypto arrays.

GPPs with crypto acceleration are CPUs that come equipped
with dedicated instructions for cryptographic operations. These
instructions allow programs to utilize specialized hardware
for cryptographic operations, which is significantly faster than
running these operations on general-purpose hardware. How-
ever, this type of solution does not offer additional security fea-
tures and relies on the GPP for secure storage and protection
against hardware attacks. Crypto acceleration in these GPPs is
typically achieved through specialized Arithmetic Logic Units
integrated into the GPP, providing a low overhead connection
to the rest of the CPU. Examples of GPPs with crypto
acceleration include Intel CPUs with the AES-NI instruction
set [124] and ARM CPUs with the ARMv8 Cryptography
Extension [125].

Hardware crypto-coprocessors are dedicated logic devices
or hardware modules designed solely for executing crypto-
graphic operations. These coprocessors cannot be programmed
and depend entirely on a processor to function, even to the ex-
tent of lacking storage for secrets. However, they offer greater
flexibility than GPPs with crypto acceleration, as they allow
for reconfiguration of cryptographic algorithms, often imple-
mented on Field-Programmable Gate Array (FPGA)s [123].

A crypto-processor is an independent processor specialized
in cryptographic operations. Unlike GPPs, these processors
protect their secret keys by generating them internally, storing
them in a dedicated memory, and transporting them via a
dedicated bus. These measures are implemented to ensure that
the system can only interact with the keys by performing cryp-
tographic operations, offering a higher level of security [123],
[126].Nevertheless, countermeasures against more intrusive
attacks may vary depending on the specific model. An example
of a crypto-processor commonly found in computers is the
TPM.

Hardware TPMs are secure crypto-processors that adhere to
specification created by the Trusted Computing Group (TCG)
to establish trust in a computing system. Hardware TPMs
must incorporate the necessary hardware protections to provide
three RoTs: storage, measurement, and reporting [127], [128].
TPMs include registers for storing measurements of each soft-
ware component that runs during the system’s boot process,
providing a chain of trust that enables the detection of any
tampering attempt during boot. Additionally, they feature a set
of asymmetric key pairs used for encryption and signing [127].
These features enable the production of signed reports on the
system’s software configuration and, the decryption of data
only when the system matches a specific state, forming the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 17

basis of trusted computing. TPMs also offer a secure random
number generator and cryptographic engines, with the most
recent version, 2.0, supporting cryptography engines for RSA
with keys of at least 2048 bits, ECC with a 256-bit key using
the US NIST Curve P-256, and AES with keys of 128-bit keys
in CFB mode. All these features are backed by tamper-resistant
hardware [129], [130].

Finally, a crypto array is a crypto accelerator that com-
prises multiple cryptographic processing elements working in
conjunction with a GPP to provide fast parallel computation
of cryptographic algorithms. These components are primarily
used in virtual private networks, where the simultaneous
handling of multiple encrypted connections is essential [123].
Consequently, they are not typically directed toward or used
in IoT applications, which do not require the simultaneous
handling of multiple connections.

Table IV presents the pros and cons of each one of these
technologies.

Technology Pros and cons

Cryptographic instruction sets
+ No additional hardware
+ Easy integration

Crypto-coprocessors
− Complex integration
− Dedicated hardware

Crypto-processor
+ Easy integration
− Dedicated hardware

TPM
+ Easy integration
− Dedicated hardware

Crypto array

+ Complex integration
− Dedicated hardware
− Expensive hardware
+ High throughput

TABLE IV: Comparison between different crypto accelerators

Security attacks and countermeasures
In general, crypto accelerators do not inherently provide se-

curity countermeasures against hardware attacks since they are
typically integrated into more complex systems. Consequently,
crypto accelerators have been targeted by various attacks. For
instance, it is known that Intel AES-NI is vulnerable to voltage
glitching [131] and side-channel attacks [132]. An example
of an attack against crypto-coprocessors is the power fault
injection attack against the coprocessor in the PlayStation
Vita [133]. However, it is important to note that some of these
components may offer security features. For instance, TPMs
typically share processors with SEs, inheriting features like
active metal shields and voltage monitors.

Nevertheless, it is crucial to recognize that the level of
protection provided by TPMs can vary. According to the
TCG definition, TPMs need to be certified with Common
Criteria Evaluation Level 4, indicating that the component
undergoes rigorous design, testing, and review against the
TCG security profile [134]. The TCG security profile defines
TPMs as being resilient against physical hacking attempts.
Additionally, TPMs are certified with the FIPS 140-3
certification [135], which encompasses multiple assurance

levels. Level 1 of this certification does not mandate any
specific physical security mechanism, while level 2 requires
the component to show evidence of tampering attempts on
plaintext cryptographic keys and critical security parameters.
Mechanisms for detecting and responding to hardware
attacks are only enforced at level 3 of the certification [135].
Typically, TPMs are certified at level 1 or 2, which means
TPM designers do not have to incorporate protections against
invasive attacks but must make the component tamper-evident.

Advantages and disadvantages for identity assurance
One limitation when implementing security features in IoT

devices is the constraint of a limited development budget
and minimal hardware capabilities. Crypto accelerators can
be a solution for IoT devices that lack the computational
power to run cryptographic algorithms. GPPs with crypto
acceleration are the most cost-effective and straightforward
way to incorporate crypto acceleration into an IoT device since
they are embedded within the device’s main CPU. To leverage
these capabilities, developers only need to ensure that their
operating system and cryptographic libraries are optimized to
utilize these specialized instruction sets [19]. This makes it
relatively easy to integrate at the software level with the rest
of the system.

Another approach, albeit requiring more adaptation, is to
use crypto-processors. These components are standalone and
must be added to the device, typically connecting to a general-
purpose bus. At the software level, they usually provide
a software stack that enables developers to leverage their
capabilities.

Conversely, cryptographic coprocessors present certain
disadvantages. They necessitate low-level integration with
access to the internal buses of a GPP. However, they offer
the advantage of reconfigurability when required.

Implementations
GPPs with crypto acceleration are commonly found in

commercial processors. As previously mentioned, examples of
these include AES-NI and ARMv8 Cryptography Extension.
Consequently, many IoT identity systems, whether intention-
ally or not, already take advantage of these extensions to
accelerate their cryptographic operations.

Crypto-coprocessors and crypto-processors are instrumental
in expediting cryptographic operations, particularly when
employed alongside resource-constrained controllers. An
illustration of their application can be observed in the work
of Pearson et al. [136], where a microchip cryptographic
coprocessor was used to accelerate authentication and
encryption operations in cloud-based environments. Beyond
their acceleration capabilities, such coprocessors offer the
added advantage of providing storage for cryptographic keys,
which was utilized to securely store authentication keys.
Additionally, the TPM is a noteworthy technology in this
context. Given its widespread adoption, various solutions
incorporate TPMs to attest the boot process and securely
store device cryptographic keys [137]–[139].

4) Secure elements:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 18

A Secure Element (SE) represents a tamper-resistant com-
ponent offering a range of security features such as secret
management and secure application execution [140]. They
are known for their resistance to forgery or copying and are
equipped with a unique identifier [141]. The concept of SEs
was introduced by the GlobalPlatform, an initiative involving
various industry stakeholders aimed at creating specifications
and standardization for secure components [140]. These com-
ponents are also commonly referred to as smart cards, and
both terms will be used interchangeably in this work.

A SE is essentially a SoC with its own independent CPU,
RAM, EEPROM, and ROM, all packaged in a compact
form. Inexpensive smart cards typically have storage capacities
ranging from 12 to 144 kilobytes of EEPROM, 6 kilobytes of
RAM, and 200 kilobytes of ROM [142]. Moreover, modern
smart cards are equipped with various interfaces for interacting
with the external world. Initially, relying on serial communi-
cation, contemporary smart cards often incorporate Near Field
Communication (NFC) or even Bluetooth interfaces due to the
prevalence of smartphones [143].

What sets SEs apart from common embedded systems is
their multiple layers of defense. For example, any attempt to
decap the SE’s package would encounter an active current-
carrying layer that, if compromised, would result in the
destruction of card’s information [121]. To thwart probing at-
tacks, SEs employ encrypted buses between their components,
and the paths on the PCB are typically scrambled to deter
reverse engineering attempts [144].

SEs are susceptible to side channel and fault injection
attacks, with the preferred attack vector being power anal-
ysis [145]. To counter these attacks, SEs typically employ
software-based measures, such as designing cryptographic
algorithms with constant execution times or introducing ran-
dom delays in execution (e.g., processing a stream of bytes
XORed with a key in a random order) [121]. Furthermore,
they can detect or impede fault injection attacks by using
sensors to identify fault conditions, like abnormal events in
the voltage or clock supplied to the card. Additional software
measures, such as checksums to prevent memory alterations
and variable redundancy involving multiple copies of the same
information in different locations, can be implemented to
detect tampering attempts. The specific measures employed by
each SE manufacturer depend on the desired assurance level.

In the past, since SEs were primarily used for a single
application, the application and OS were developed together
and stored in ROM. However, this approach posed chal-
lenges in development, requiring specific knowledge about the
smart card’s intrinsic features. Additionally, the final product
was model-dependent and unable to receive updates as it
was stored in ROM. Nowadays, smart cards deploy the OS
and applications independently to overcome these limitations.
Smart card OSs are minimal, provide hardware abstraction to
applications, and are typically deployed in ROM, making them
unchangeable after production. On the other hand, applications
use the APIs provided by the OS and are stored in Electrically-
Erasable Programmable Read-Only Memory (EERPOM), en-
abling updates over time. Furthermore, many smart card OSs
support virtualization, allowing the deployment of multiple

applications within the same smart card independently [146].
GlobalPlatform standards have significantly contributed to

the development of multi-application smart cards, promot-
ing security and interoperability, regardless of the OS used.
Among their comprehensive set of standards, the GlobalPlat-
form Card Specification stands out. This specification defines
a detailed framework comprising logical components designed
to facilitate secure multi-application smart card operation. It
includes various procedures and APIs specifically designed for
efficient application management and installation within the
dynamic context of multi-application environments [146].

Smart card models offer a range of security features
supported by specialized hardware coprocessors. Typically,
this list includes asymmetric and symmetric cryptographic
algorithms, hash functions, and a TRNG. The availability of
algorithms may vary depending on the specific smart card
model [121].

Security attacks and countermeasures
Despite their limited computing power and memory capac-

ity, SEs operate under high-security requirements. The SE’s
threat model assumes that the information stored inside the
card must remain secure even when attackers have unlimited
access. As a result, smart cards employ the security coun-
termeasures outlined in Subsection III-A4. SEs use multiple
anomaly sensors to detect unintended execution conditions,
including variations in temperature, voltage, clock, and EM
fluctuations. When an unusual condition is detected, the SE
responds accordingly. Depending on the specific devices and
sensors involved, the response may involve an automatic reset
or halting execution until normal operating conditions are
restored [121].

Over the years, numerous side-channel attacks have been
launched against smart cards. To combat these threats, SE
software is designed with multiple layers of defense to prevent
information leakage. This includes measures such as ensur-
ing constant execution times for cryptographic operations,
masking memory when critical information is present, and
introducing randomized data manipulation by the user. In
addition to software countermeasures, SEs employ active metal
shields to thwart certain side-channel attacks, as described
in Subsection III-A4. These measures in combination with
randomized elements in the SE’s internal design further dis-
courage reverse engineering and make invasive attacks or SEM
more challenging [121].

The security features of SEs are guaranteed by two
certifications: Common Criteria and FIPS 140-3 [135].
Typically, SEs are certified at Assurance Level 6 in the
Common Criteria, signifying a partially formally verified
and tested design with a security profile specifically created
for this purpose [147]. They are also certified at Level 3
of FIPS 140-3, ensuring tamper protection and response to
attacks [135].

Advantages and disadvantages for identity assurance
Incorporating SEs in IoT devices offers a practical solution

for addressing the hardware limitations of highly constrained
devices when it comes to performing security operations. SEs

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 19

provide a significant advantage by delivering robust security
assurance while consuming minimal energy. Additionally,
there is a wide variety of smart cards to choose from, each
with its own set of characteristics. In more complex setups,
devices can make use of multiple application cards within the
SE, allowing them to support a diverse range of applications.
In simpler systems, you can employ smart cards with limited
functionality to efficiently meet specific requirements.

However, depending on the system’s design, the device
may require the storage of a PIN to unlock the smart card’s
functionalities. Therefore, in a production system, using
an SE will necessitate additional security mechanisms to
address this issue. Moreover, despite different form factors,
adding an SE means introducing another component, which
increases the device’s size and complexity. Finally, if you
need to develop an SE application, the development team
will need to familiarize themselves with a new technology
and development kit.

Implementations
SEs have found utility among numerous researchers and

solutions for securely storing cryptographic keys that iden-
tify devices and offloading cryptographic operations [148]–
[150]. For instance, in the academic realm, Jeon et al. [149]
introduced the use of SEs in LoRaWAN nodes to mitigate
the risk of communication key leakage within the LoRaWAN
protocol. This approach significantly enhances the security of
the communication process.

In the industrial sector, an exemplary application can be seen
in Bosch security cameras, where SEs are deployed to securely
store cryptographic keys and facilitate the secure handling of
firmware updates [150]. Additionally, some researchers have
harnessed SEs with NFC interfaces to create solutions that
support both remote and local identification [151], [152]. This
enables an operator to physically identify a device using a
smartphone equipped with NFC, mitigating issues related to
labels that could be tampered with or eavesdropped on by
potential attackers [152].

Furthermore, the application of SEs in military Unmanned
Aerial Vehicle (UAV)s has also been subject to study. Any
information stored in a military UAV must remain secure,
even if the UAV falls into enemy hands. With the ongoing
development of autonomous UAV fleets, researchers have
suggested incorporating an SE into each drone within the fleet
to store any information that could compromise its mission
or the overall fleet’s security [153].

5) Trusted execution environment:
A Trusted Execution Environment (TEE) comprises a com-

bination of software and hardware designed to provide isolated
execution and storage environments separate from the main
operating system. Its primary objective is to ensure informa-
tion security and privacy even in cases where the device is
compromised [154]. This is accomplished through five key
features: isolated execution, secure storage, remote attestation,
secure provisioning, and trusted paths [155].

Isolated execution allows applications to run independently
of other code, their own address space and system resources.

This isolation can be implemented in various ways, either
at the OS level using a hypervisor or within a parallel
environment with separated components.

Secure storage ensures data confidentiality and integrity,
even when the device is powered off. While the OS can
maintain isolation based on the required assurance level,
stronger secure storage solutions employ separate components
to manage access control independently of the OS. Alterna-
tively, the RoT can be utilized to store cryptographic keys,
which are then used to securely encrypt and decrypt data.
However, in this scenario, it is critical to prevent data from
being rolled back to a previous version.

Remote attestation serves two essential purposes: verifying
the origin of a message remotely and ensuring the correct
loading of the TEE. It guarantees the correct loading of the
TEE’s firmware, protecting against persistent threats. However,
it is important to note that remote attestation does not defend
against runtime compromises or provide information about the
device’s ongoing proper functioning.

Secure provisioning involves sending data to a specific TEE,
while maintaining secrecy and integrity in communication.
This mechanism is typically used for secure updates or chang-
ing device settings, leveraging remote attestation and unique
cryptographic keys for each device.

A trusted path enables secure access to physical peripherals.
For example, if an application running within a TEE requires
access to a keyboard for user interaction, it should be impos-
sible to interfere with the connection between the TEE and
the keyboard in any way, including eavesdropping attempts.

At the core of these features, lies the concept of the
Trusted Computing Base (TCB), which encompasses the set of
software and hardware components explicitly trusted to ensure
the security properties expected from a TEE [155]. The TCB
essentially serves as the RoT for these platforms. It defines
two distinct environments: the TEE, which is the execution
environment provided by the TCB, and the Rich Execution
Environment (REE), provided by untrusted components [141].

Much like SEs, the GlobalPlatform initiative plays a crit-
ical role in establishing TEE standards. It proposes TEE
architectures, defines APIs for communication between REE
applications and those running within the TEE, and promotes
the development of TEE applications that can operate in-
dependently of the underlying TEE implementation [141].
Additionally, it introduces the concept of a Trusted User
Interface API. As mentioned earlier, TEE applications often
require user input, which is why trusted paths are integrated
into the TEE architecture. The GlobalPlatform aims to address
this challenge by advocating for an input/output peripheral
within the TCB [156].

The GlobalPlatform TEE system architecture
specification [154] puts forth three different architectures:
one with shared memory between the REE and an isolated
component inside the SoC where the TEE operates; an
architecture in which all resources are shared with the REE
but with an isolation level between the two environments;
and an architecture introducing an external security SoC in
the device that communicates with the main SoC to provide

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 20

TEE capabilities.

Hardware-based trusted execution environment enabling tech-
nologies
The concept of TEE encompasses various implementations
with unique characteristics, limitations and development ap-
proaches. By delving into ARM TrustZone and Intel Software
Guard Extensions (SGX), we can gain valuable insights into
the specific attributes, constraints, and development opportuni-
ties offered by these TEE technologies. This subsection aims to
provide an analysis of two TEE-enabling technologies: ARM
TrustZone [157] and Intel SGX [158]. These technologies have
been selected for examination due to their market availability
and support for third-party development.

However, it is crucial to note that at the time of writing,
the version of Intel SGX detailed here is deprecated in
consumer-grade CPUs. It is anticipated that only server-grade
CPUs will continue to provide support for Intel SGX [159].
Furthermore, there have been rumors of a new version of
Intel SGX, but specific details are currently limited, and its
future remains uncertain [160].

ARM TrustZone

ARM TrustZone [157] is a set of hardware security exten-
sions present in a wide array of ARM processors, ranging from
cost-effective and less powerful chips to high-end processors.
This technology permits applications to operate in either a
secure state (TEE) or a non-secure state (REE), with the
processor exclusively executing in one of these states at any
given time. The underlying system ensures a secure context
switch between these two states and regulates access to its
resources. Notably, this architecture does not rely on separate
hardware components for each environment. Instead, a secure
monitor manages the context switch between the two worlds
(REE and TEE) at the hardware level. Depending on the pro-
cessor generation, this secure monitor may be an independent
component within the processor or integrated directly into the
processor’s logic [161].

While ARM TrustZone is primarily designed as a security
technology, it also functions as hardware-supported virtualiza-
tion technology [161]. This means that each execution environ-
ment within TrustZone can host its own OS, offering flexibility
to developers. Depending on the application, developers may
create a software library that resides in the TEE and is invoked
from the REE or utilize a Secure OS designed for the TEE’s
purpose, often featuring a streamlined set of features to keep
the TCB as small as possible. In contrast, the REE typically
utilizes conventional OSs [141].

Developers often use a TEE built upon ARM TrustZone
as a development framework for their applications rather
than implementing applications directly on ARM TrustZone
itself. The GlobalPlatform standards facilitate this process
because ARM TrustZone implements multiple GlobalPlat-
form standards, which enable interoperability among different
TEEs [162]. Examples of TEEs used in conjunction with
ARM TrustZone include OP-TEE [163], SierraTEE and Open-
TEE [164].

Sharing hardware components between the TEE and REE
introduces inherent risks, as REE applications can disrupt
TEE applications. For instance, REE applications may inter-
fere with TEE execution by generating interruptions, forc-
ing context switches, potentially resulting in denial-of-service
(DoS) scenarios. Additionally, the shared CPU cache be-
comes susceptible to side-channel attacks, wherein malicious
applications exploit cache vulnerabilities to extract sensitive
information. To mitigate DoS attacks, ARM TrustZone allows
for interrupt prioritization configuration, giving precedence to
secure world interrupts. However, developers must activate this
feature explicitly [161].

ARM TrustZone CPUs share their cache between applica-
tions in both worlds, though cache access is controlled by a tag
bit that indicates the cache’s assigned world. While non-secure
world applications cannot access the cache assigned to secure
user world applications, this setup can still be exploited in
various ways, from rootkit attacks that evade detection [165]
to multiple side-channel attacks capable of retrieving cryp-
tographic secrets from the rich world by monitoring cache
activity [166]–[168].

It is important to note that ARM TrustZone secure world has
full access to the memory of the untrusted world, introducing
the possibility of boomerang attacks [169]. These vulnerabil-
ities allow a non-secure world application to exploit a TEE
application to access memory it should not have access to.

Lastly, ARM TrustZone does not specify a RoT or a
secure storage method, placing the onus on system designers
to develop effective solutions for these challenges. This
complexity can result in a lack of authenticity and integrity
guarantees in devices that lack dedicated hardware modules
for these critical functions [161], [170].

Intel Software Guard Extensions

Intel SGX consist of a set of Intel CPU instructions designed
to offer integrity and confidentiality to computations, even in
the event of a compromise of privileged software, such as
the kernel or hypervisor [158]. At the core of Intel SGX is
a trusted container, referred to as an enclave, protected by
trusted hardware. Enclaves only accept applications signed
by a trusted entity, currently Intel, and can undergo remote
attestation. Each CPU can host multiple enclaves, and each
enclave can house multiple applications.

The data and code of an enclave are stored in the Processor
Reserved Memory (PRM), a subset of DRAM reserved for
enclaves. Inside the PRM, there is an Enclave Page Cache
(EPC), divided into multiple pages, with each page assignable
to a single enclave. Enclaves cannot access pages assigned
to other enclaves. Pages may have various types, from those
mapped to the enclave’s address space to metadata used in
their lifecycle [158].

To secure an EPC when it must reside in untrusted memory,
SGX encrypts and signs it to guarantee confidentiality and
integrity. Untrusted applications can only write to the PRM
during the loading stage of an application into the enclave, a
process that is cryptographically hashed and used for software
attestation.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 21

Enclave virtual memory may incorporate memory mapped
from the outside world, allowing enclaves to use existing
libraries from the non-secure world or act as libraries for
processes outside the enclave. In such cases, non-enclave
software cannot access PRM memory [158]. However, when
transitioning from an enclave to an application outside the
enclave, the CPU saves its state to a predefined area and clears
its registers to prevent data leakage.

Intel SGX enclaves run at the lowest possible privilege
level (user mode), making enclave application development
similar to non-enclave applications. Developers have a set of
libraries and a Software Development Kit (SDK) to compile
and deploy applications [171]. Additionally, multiple SDKs
exist that build upon Intel’s SDK to facilitate secure SGX
application development [172], [173].

Enclaves must adhere to the same security constraints as
non-enclave applications and are restricted from direct inter-
action with computer devices [158]. However, the inherent
secrecy of enclave software raises security concerns. Tradi-
tional antivirus software typically scans executables, files, and
memory for patterns indicative of malicious behavior, which
SGX technology can potentially evade, rendering a malicious
actor residing within an enclave undetectable [174].

From a physical security perspective, SGX’s threat model
excludes hardware attacks on the CPU chip but considers
attacks on the DRAM, its bus, and debugging ports [175].
Attacks on CPU chips are complex and require expensive
equipment, making them rare. However, researchers have
analyzed Intel SGX-related patents, and while the technology’s
intrinsic characteristics are not publicly known, they have
identified countermeasures to increase the difficulty of CPU
chip attacks [158]. These measures may include hardcoding
keys with fuses in the CPU circuit or using PUFs to generate
keys.

Intel SGX is susceptible to several side-channel attacks,
some of which are specific to Intel processors. These attacks
leverage processor features like hyper-threading and specu-
lative execution, designed to optimize instruction execution.
Hyper-threading partitions physical cores into logical cores,
allowing simultaneous execution of multiple threads, with
these logical cores sharing essential resources. Speculative
execution optimizes instruction pipelines by processing steps
in parallel for different instructions , even before the outcome
of branch instructions is known [176].

These optimizations have been exploited to create various
attacks against SGX. Branch prediction attacks target the
component responsible for predicting execution flow before
a branch instruction. These attacks have been used to extract
a private key stored within an enclave [172], [176]. Vulner-
abilities related to speculative execution, like: Spectre [177]
and Meltdown [178], have initially targeted non-enclave ap-
plications but have also been adapted to attack SGX enclaves,
exploiting the same principles [179], [180].

More recently, microarchitectural data sampling attacks
have introduced a new category of attacks capable of breaching
established security boundaries, including enclaves. These
attacks exploit vulnerabilities in undocumented buffers to
leak information [181]–[183]. Fortunately, these vulnerabilities

can be addressed through microcode updates to the proces-
sor [173].

SGX establishes a RoT to ensure the confidentiality and
integrity of the TEE. Only properly signed enclaves can be
installed. SGX also offers attestation capabilities, but neither
of these features is supported by hardware. Each SGX-enabled
CPU comes with a privileged enclave, the quoting enclave,
installed by Intel. This enclave measures the data and code
loaded into each enclave and offers remote attestation capabil-
ities. The measurements it provides are similar to those offered
by TPMs, but the signature algorithms are different and are
not implemented in tamper-resistant hardware [184].

To sum up, Table V summarizes the different advantages
and disadvantages of each TEE technology.

Technology Pros and cons

Intel SGX

+ No additional hardware
− Deprecated on Intel Core processors
− Requires an expensive CPU

Arm TrustZone

+ No additional hardware
+ Available in a wide range of CPUs
− No standard secure storage or RoT

TABLE V: Comparison between Intel SGX and Arm Trust-
Zone

Security attacks and countermeasures
As previously mentioned TEEs generally share their hard-

ware resources with the rest of the computing environment,
which introduces certain security risks. In this subsection, we
will examine the consequences of this, affecting both the TEE
implementations discussed earlier.

First and foremost, it is essential to recognize that TEEs do
not protect against software vulnerabilities. Consequently, if a
security flaw exists in the implementation of the TEE or its
associated SDK, the security of the TEE can be compromised.
Over the course of TEE development, both ARM TrustZone
and Intel SGX have faced software vulnerabilities. For exam-
ple, Bulck et al. [185] identified several vulnerabilities in Intel
SGX SDKs. Researchers have also identified several software
vulnerabilities in ARM TrustZone TEEs [161]. At the time
of writing, the NIST vulnerability database had documented
73 vulnerabilities related to ARM TrustZone [186]. It is
important to note that many of these vulnerabilities affect TEE
implementations rather than ARM TrustZone itself, as ARM
TrustZone is a bare-metal technology that developers use to
create their TEE implementations [187].

On the hardware side of TEEs, side-channel attacks pose
a significant threat. Cache-based attacks, in particular, target
TEEs. In such attacks, a malicious application running in
the untrusted environment shares the same processor core
with the TEE application. The malicious application fills the
processor cache with its data and waits for the TEE application
to execute, causing the TEE’s data to be evicted from the
cache. Subsequently, the malicious application accesses the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 22

same data and measures the time it takes to retrieve the
information. By exploiting the faster access to data stored in
the CPU’s cache compared to RAM, the malicious application
can infer access patterns of the TEE. With knowledge about
the TEE’s code, it can further deduce information about the
TEE’s execution [173]. These principles have been used to
develop various attacks, posing risks to both Intel SGX and
ARM TrustZone [166]–[168], [188], [189].

Additionally, TEEs are vulnerable to other types of side-
channel and hardware attacks. The literature indicates that both
Intel SGX and ARM TrustZone are susceptible to attacks like
EM attacks, power analysis attacks, and fault injections [158],
[161]. Researchers have demonstrated these attacks in practice.
For instance, Bukasa et al. [190] conducted EM attacks against
ARM TrustZone, and Chen et al. [191] performed a voltage
glitch attack on an Intel SGX enclave. In both cases, the
researchers were able to recover cryptographic keys from the
TEE.

Intel SGX’s threat model excludes physical threats against
the CPU chip due to the substantial cost of hardening a
general-purpose CPU against such attacks. However, the threat
model does include threats against the bus connecting Random
Access Memory (RAM) to the CPU, primarily due to the risk
of eavesdropping attacks. Consequently, any data that SGX
needs to store in RAM is appropriately encrypted and signed.
Nevertheless, information inside the internal CPU buses is
transmitted in clear text [158], [192].

In summary, TEEs offer valuable security features to
enhance resilience against software attacks. Nevertheless,
TEEs lack protection against most hardware attacks, and if
compromised, they can be used as a persistence method for
attackers [155].

Advantages and disadvantages for identity assurance
The primary advantage of using a TEE for identity assur-

ance is the ability to establish a secure execution environ-
ment without the need for additional hardware components,
which results in cost savings and reduced power consumption
compared to alternative solutions. However, it is important to
note that in the case of ARM TrustZone, additional hardware
adaptations may be necessary to ensure a RoT and enhance the
overall security of the system. These adaptations may involve
incorporating supplementary hardware elements to reinforce
the security foundation provided by the TEE.

TEEs can offer better performance compared to solutions
like SEs [193], particularly in terms of CPU, RAM, and
storage capabilities. For example, CPUs that incorporate
ARM TrustZone technology can have gigabytes of RAM,
whereas SEs typically have much smaller RAM capacities.
However, developers must acquire proficiency in a new
software stack to develop solutions using TEEs. Furthermore,
they must have a clear understanding of the limitations of
TEE technology. While it provides security benefits, it does
not offer complete defense against all hardware attacks.
Additionally, sharing components with the non-secure world
introduces new risks that need to be carefully considered.

Implementations

TEE solutions have primarily been used for storing cryp-
tographic keys, providing remote attestation, identity verifica-
tion, and ensuring the security and resilience of applications
even if the device is compromised. Most of these solutions are
based on public key cryptography, where each device has a pri-
vate key used for device identification. Several solutions follow
these principles. For instance, Ling et al. [194] developed a
system that provides secure boot and remote attestation for
IoT devices, leveraging ARM TrustZone. This research uses
ROM and eFuses to overcome the secure storage limitations
of ARM TrustZone and ensure the security of a RoT.

Lesjak et al. [193] conducted a study to compare two
authentication systems: one based on an ARM TrustZone-
enabled CPU and the other on an SE. The study aimed to
analyze the advantages and disadvantages of each approach,
and concluded by proposing a hybrid system that combines
the strengths of both technologies to mitigate the security risks
associated with ARM TrustZone.

Wang et al. [195] developed a solution using Intel SGX that
offers a lightweight alternative to remote attestation compared
to TPMs. This solution provides a secure environment for run-
ning applications and offers the benefit of reduced complexity
and overhead.

Durand et al. [196] developed a lightweight communication
system backed up by hardware. However, since Intel SGX
CPUs are too expensive for most IoT devices, they used an
SE in the device and an Intel SGX enclave in the server to
securely receive the device’s communications.

6) PUFs:
PUFs are physical primitives designed to generate a unique

response when provided with a specific input, known as a
”challenge” [197]. The uniqueness and unpredictability of
the response arise from the unique hardware characteristics
of each device, which result from variations in the physical
manufacturing process [198]. The pair of challenge and cor-
responding response is referred to as a Challenge-Response-
Pair (CRP) [199]. PUF is a generic concept encompassing
various systems from different application fields. However,
some constructions outside the field of hardware security
engineering are not referred to as PUFs [18].

Many researchers consider PUFs a technology that can help
address device identity challenges in the IoT [200]–[202]. This
is due to the potential of PUFs to provide a cost-effective
and secure means of generating and storing cryptographic
keys compared to EEPROM solutions with similar assurance
levels [203].

PUF constructions are evaluated using two key metrics:
intra-distance and inter-distance. Intra-distance measures the
Hamming distance between two responses from the same
PUF instance when the same challenge is applied. Inter-
distance, on the other hand, qualifies the Hamming distance
between responses from different PUF instances when the
same challenge is used [18].

In addition to these metrics, researchers also assess PUF
reproducibility and uniqueness. The distribution of intra-
distance responses provides insights into PUF reproducibility.
PUFs are not mathematical functions because a single input

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 23

(challenge) can produce multiple outputs due to changes in the
physical environment and random noise in response genera-
tion [204]. Therefore, reproducibility is a crucial characteristic
of PUF-based systems. PUF solutions often employ fuzzy
extractors to handle these variations and produce a stable
response [204]. The distribution of inter-distance responses
assesses the uniqueness of a PUF. Different PUFs challenged
with the same input should yield distinct responses. Ideally, the
inter-distance responses should be around 50% for a PUF to
be considered a true random generator [203]. If a PUF is both
reproducible and unique, it is also identifiable. This means that
using a PUF response to identify a device is feasible because
the response is both unique and stable [18].

The security promise of PUFs is based on three essential
characteristics: tamper-resistance, unclonability, and unpre-
dictability. Tamper-resistance involves the ability to resist
unauthorized physical modifications aimed at extracting infor-
mation or bypassing security protections. PUF constructions
rely on precise measurements of physical features, and any
slight variation in these features results in a change in the
CRPs, effectively creating a new PUF instance [18]. PUFs
are unclonable due to these precise measurements. In any
cloning attempt, the attacker cannot reproduce all of the
PUF characteristics because they stem from variations in the
manufacturing process [18].

From a security perspective, the predictability of PUFs
distinguishes them into Weak PUFs and Strong PUFs. This
categorization is based on the system’s resistance to an attacker
attempting to predict all possible CRPs [205], [206]. Strong
PUFs possess the property of being resistant to prediction,
even when subjected to extensive attacks over an extended
period. In contrast, Weak PUFs do not meet this requirement,
making them susceptible to prediction by an attacker [18].

Strong PUFs have a large set of CRPs, preventing the
creation of a comprehensive database with all possible pairs.
Even if attackers have knowledge of a significant subset of
CRPs, they cannot predict the unknown ones. Furthermore, if
the attacker physically possesses the PUF, the security of a
Strong PUF is not compromised [203], [207]. Weak PUFs, on
the other hand, may have only a single CRP. Consequently,
the security system is compromised if an attacker obtains its
response [203], [208]. Moreover, most Weak PUFs having a
single CRP, allow device cloning [207].

Strong PUFs offer higher security guarantees than Weak
PUFs. However, some Strong PUF constructions have become
vulnerable to modeling attacks due to advancements in new
technologies. These attacks require a substantial number of
CRPs to model the PUF response. Researchers have been
aware of these attacks since the inception of this research
field. Nevertheless, with the advancement of machine learning
techniques, Strong PUF constructions, previously considered
secure are now considered vulnerable to these attacks [209]–
[213].

The vulnerability of Strong PUFs to these attacks has
spurred significant interest in recent research. As a result,
some authors argue that the development of Strong PUFs
remains an ongoing research challenge, as these attacks
have compromised the expected security features. There is a

need for further advancements and refinements to enhance
the robustness and resilience of Strong PUFs against these
emerging attack vectors [18], [214], [215].

Security attacks and countermeasures
PUFs offer a potential security improvement in storing

cryptographic keys, particularly by eliminating offline attacks
because the information is not stored. However, it is important
to note that PUFs lack countermeasures against hardware
attacks. Any attempt to tamper with or inject a fault into the
device would induce changes in the PUF’s response, making
it detectable. However, depending on the specific construction
of PUFs, they may still be vulnerable to side-channel attacks
or reverse engineering attempts to model the PUF’s response.

For example, some delay-based PUFs, like the arbiter PUF,
which rely on measuring delays between two competing signal
paths, can be vulnerable to power-side channel analysis [216]
and optical side-channel attacks [217]. Similarly, RO PUFs
can be vulnerable to EM side-channel attacks [218].

The complexity of PUFs is often cited as a factor that makes
them resistant to reverse engineering attempts [18].

However, researchers have demonstrated that some PUFs,
like SRAM PUFs, can be attacked using SEM to model their
responses. SRAM PUFs exploit the probabilistic behavior of
memory cells after power-on/power-off cycles [219]. While
they have the advantage of being low-cost and simple to
implement, these advantages can also make them easier for
attackers to compromise [220].

To mitigate these vulnerabilities, PUFs can be improved
through design modifications or the incorporation of
countermeasures. For instance, new SRAM PUF constructions
might include an asynchronous reset mechanism for memory
cells to decrease information exposure [221]. Researchers
have also suggested changes in the design of RO PUFs to
reduce the emanation of EM radiation [218]. In summary,
while the reliance on physical characteristics protects PUFs
against tampering attempts, they remain vulnerable to side-
channel attacks, which require additional countermeasures for
mitigation.

Advantages and disadvantages for identity assurance
PUFs offer several advantages in the context of IoT key

management. They are a cost-effective solution when com-
pared to other methods, such as anti-tampering EEPROMs,
for storing cryptographic keys. PUFs also require less circuit
space and energy to operate [203], making them practical
choice for resource-constrained IoT devices. Additionally,
when Strong PUFs successfully withstand modeling attacks,
they can provide lightweight authentication and identification
protocols that do not rely on resource-intensive cryptographic
algorithms [222].

PUFs are particularly suitable for managing device identity
and ensuring the security of IoT devices against invasive at-
tacks like tampering or key extraction. However, as mentioned
earlier, both Strong and Weak PUFs may have vulnerabilities
that need to be addressed. Therefore, any system using this
technology should be aware of these risks and implement
appropriate safeguards to mitigate them.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 24

It is also crucial to consider the security of the server
where the CRPs are stored when using strong PUFs. In
many systems, the assumption is made that the server is
secure [223]. However, in certain scenarios, the risk of a
compromised server may be deemed unacceptable, as it could
lead to the compromise of the confidentiality of all CRP pairs
and enable attackers to impersonate any device within the
system. This highlights the importance of securing not only
the PUFs but also the infrastructure that handles their data.

Implementations
In identity assurance, we observe the use of PUFs in

two primary scenarios: the generation of secure keys and
authentication. Specifically, Strong PUFs are employed for
authentication, while Weak PUFs are utilized for key genera-
tion [203].

A typical authentication protocol entails conducting multi-
ple secure challenges on a manufactured PUF. The resulting
responses, known as CRPs, are securely stored and used
for device authentication. To prevent replay attacks, each
challenge is employed only once, ensuring the reliability of the
authentication process [215], [224]. This type of authentication
protocol has been in use since the inception of this technology.
Early examples include Gasend et al.’s silicon PUF [225]
and Lim et al.’s arbiter-based PUF [226]. However, the threat
model of these initial implementations was overly restrictive,
rendering them vulnerable to modeling attacks [227].

To thwart modeling attacks, the subsequent generation of
PUF constructions started using one-way functions applied
to the PUF response to hinder direct access to the PUF
CRP [224], [228]–[230]. This type of PUF is generally referred
to as a control PUF. However, further research uncovered
vulnerabilities in this construction due to reversible one-way
functions and pattern matching [210], [231].

Current research is focused on enhancing existing construc-
tions to make them more resilient to modeling attacks. The
primary approach is to secure the PUF interface by imple-
menting mutual authentication [232]–[235]. Research efforts
have also been dedicated to preventing modeling attacks while
improving the authentication protocol.

Other researchers, such as Chatterjee et al. [236] and
Qureshi et al. [223], have proposed solutions that eliminate
the assumption of a secure CRP database. This means that
even if the authentication server is compromised, the CRPs
remain protected as they are not stored in plain text.

Ebrahimabadi et al. [237] have made advancements in
mitigating the eavesdropping of CRPs and addressing mod-
eling attacks. They have devised an authentication protocol
that scrambles and divides the communications between the
server and a node (the device with a PUF that needs to be
authenticated) into multiple packets. These packets are sent
through multiple nodes to obscure the actual destination of
the message. With this approach, the authors anticipate that
attackers cannot correlate the CRPs with a specific device,
making it virtually impossible to perform a successful model-
ing attack.

Hang et al. [238] employ the classic authentication protocol
with Strong PUFs. However, they combine multiple PUFs

on the same device to create a fingerprint that changes if
its components are tampered with. This construction uses a
configurable RO PUF as a hardware security primitive and
a latch structure to extend the key space of the responses,
thereby increasing its resilience. This solution follows a similar
authentication protocol, where a server stores multiple CRPs
and performs queries to authenticate the device.

On the other hand, Weak PUFs used in IoT systems do not
attempt to replace traditional authentication systems. Instead,
they aim to enhance the storage of cryptographic keys on
affordable IoT devices. A Weak PUF generates the same
secret key every time the device runs. Consequently, this key
does not need to be stored, mitigating the risk of an attacker
extracting the key when the device is not operational. For this
generation process to be reliable, the secret key extraction from
a Weak PUF response requires an additional step: a helper
data algorithm 2. Any alteration in the cryptographic key is
unacceptable for most encryption protocols. Therefore, this
algorithm facilitates the extraction of a secret key from a noisy
or non-uniform response [239], [240].

The generation process of a secret key from a Weak PUF
typically consists of two phases: enrollment and reconstruc-
tion. During enrollment, a new secret key is generated, while
reconstruction is the process of retrieving the same secret key
after its initial creation. In the enrollment phase of a PUF,
a secret key and helper data are generated from the PUF
response. Keeping the secret key confidential is essential, but
the helper data does not require the same level of secrecy
and can be stored in a non-secure NVM. The reconstruction
phase utilizes the obtained helper data to generate the same
secret key when presented with another PUF response from
the same PUF [241], [242]. The first practical work utilizing
PUFs to securely manage cryptographic keys was carried
out by Škorić et al. [241] and Suh et al. [243]. Over the
years, new research in this field has emerged. Some of this
research involves the use of novel types of PUFs for secret
key generation [219], [244], while others focus on creating
re-configurable PUFs that enable the change of secret keys
over time [242], [245], [246]. In this body of research, Strong
PUFs are also employed due to the abundance of CRPs,
which enable the generation of multiple keys on the same
PUF instance [239]. More recently, researchers have been
developing PUF-based systems capable of generating a shared
key among different resource-constrained devices to facilitate
multiparty communication [247].

In summary, there are two primary approaches to enhanc-
ing authentication and identity on IoT devices using PUFs:
lightweight authentication protocols using CRP databases and
secret key generation. Authentication protocols with CRP
databases rely on the resilience of the PUF against security
attacks. However, when properly implemented, this technol-
ogy meets the needs of resource-constrained IoT devices by
providing an energy-efficient way to authenticate a device
without requiring intensive computation. On the other hand,
PUF-based key generation serves as a security primitive for
existing identity and authentication systems. While it does not

2A fuzzy extractor is a specific type of helper data algorithm [239].

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 25

Technologies Lightweight cryptography Object identification Secure storage
TRNG •

Masked ROM and OTP memories

Masked ROM •
Floating gate OTP •
Fuse OTP •
Anti-fuse OTP •

Crypto accelerators
Crypto instruction sets •
Crypto-coprocessors •
Crypto-processor • • •

Secure element • • •

TEEs Intel SGX • • •
Arm TrustZone •

PUF • •

TABLE VI: Technologies and associated research challenges

eliminate the need for substantial computation, it offers a cost-
effective and secure means of generating and storing unique
secret keys.

C. Summary
The various hardware technologies discussed in this section

have the potential to contribute to the development of IoT
identity systems. However, it is crucial to acknowledge that
these technologies differ significantly in their capacity to
support such systems. Additionally, when deciding which tech-
nology to incorporate into a device, designers must carefully
evaluate the strengths and weaknesses of each option. In
this assessment, we examined how these technologies can
benefit IoT identity systems and contribute to addressing the
challenges associated with IoT identity. We also considered
their respective advantages and disadvantages.

Section II-B identified three key challenges for developing
an identity system: lightweight encryption, object identifica-
tion, and secure storage. The relationship between these chal-
lenges and various technologies is summarized in Table VI.

Each encryption accelerator, SEs, and TEEs can provide
ways to address the need for lightweight encryption algo-
rithms. All these technologies can efficiently run crypto-
graphic algorithms, making these operations faster and more
energy-efficient. Among these technologies, it is essential
to highlight the cryptographic instruction sets (a subtype of
the cryptographic accelerator) because they can potentially
standardize the implementation of cryptographic algorithms
in hardware. Strong PUFs and TRNGs, albeit indirectly, also
contribute to the research challenge in lightweight cryptog-
raphy. TRNGs may not optimize cryptographic algorithm
execution but provide high-entropy numbers, essential for any
asymmetric encryption scheme. PUFs can be leveraged for
lightweight authentication systems, alleviating the reliance on
cryptographic algorithms.

In terms of object identification, Intel SGX and SEs offer an
isolated execution environment and secure storage capabilities
that can be leveraged to develop object identification systems.
Another technology with similar potential is TPMs. However,
developers are constrained by the features specified in the
TPM standard. Taking a different approach, we have strong
PUFs, which rely entirely on the hardware characteristics of
the device and can be used to uniquely identify a device.

Masked ROM and OTP memories provide read-only mem-
ory options for storing RoTs. However, they do not provide
data-at-rest protection, unlike other technologies such as Intel
SGX and SEs. TPMs and PUFs can also help address the
challenge of secure storage but offer a limited set of features.
TPMs are primarily designed for storing cryptographic keys,
while Weak PUFs are even more limited as they cannot import
cryptographic keys generated outside of the PUF.

Therefore, there are several candidate technologies capable
of supporting new identity and authentication systems, as they
can address some of the challenges hindering identity and
authentication in IoT. It is now up to developers to understand
these limitations and integrate these technologies into new
systems.

IV. EXPERIMENTATION

In previous sections, we discussed various attacks that
could compromise IoT authentication and device security,
as well as different technologies that can be employed to
mitigate these attacks and address the challenges highlighted in
earlier research. This section explores how these technologies
can be integrated to create a device that leverages multiple
components to overcome the challenges and threats mentioned
earlier.

Our case study focuses on a smart meter connected to
a utility company via a mesh network. In many instances,
such devices incorporate two processors [30], [70]. The first
processor is primarily responsible for accurately measuring
electricity consumption, while the second facilitates external
interactions by enabling communication with the utility com-
pany via radio, establishing a means for transmitting relevant
data and receiving instructions. This processor may also in-
clude a Home Area Network (HAN) port [71], a physical
interface through which device settings can be changed, and
measurements can be obtained.

Our primarily focus is the processor responsible for external
communication. Based on the technology employed in the
mesh network, these processors can incorporate different types
of radios. Commonly, these networks use protocols based on
IEEE 802.15.4 [248], such as Zigbee and 6LoWPAN [70],
[249]. For this purpose, we have selected the Espressif ESP32-
C3 [250], a 32-bit RISC-V microcontroller with several hard-
ware security features, including cryptographic accelerators.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 26

We opted for this microcontroller as an alternative to the
Espressif ESP32-H2 [251], which offers similar capabilities
and support for 802.15.4 but was unavailable for purchase at
the time of writing.

The Espressif ESP32-C3 features cryptographic accelerators
supporting both symmetric and asymmetric encryption, hash
algorithms, a TRNG, and OTP memory. These features serve
as fundamental building blocks for implementing advanced
functionalities such as secure boot or external flash encryption.
However, it is important to note that leveraging these features
and primitives requires explicit enabling and utilization by the
device’s developer. At the core of the ESP32-C3’s security
features is the eFuse OTP memory located inside the processor.
This memory is divided into 11 blocks, each containing 256
bits, serving various purposes. Some blocks are reserved for
system-related functions, while others store essential infor-
mation like the device’s MAC address or disabling debug-
ging capabilities. Additionally, certain blocks are allocated
for storing cryptographic keys and user data. By working
in conjunction with the ESP32-C3’s eFuse controller, it is
possible to configure access controls for memory blocks. For
example, certain eFuses can be configured to be unreadable
from outside the chip or only readable by cryptographic
accelerators [252].

Secure boot and flash encryption rely on the utilization
of these features alongside cryptographic accelerators, en-
abling a hardware-centric implementation. This allows for the
use of standard cryptographic algorithms, such as AES and
RSA, without compromising device performance or power
consumption. The secure storage of cryptographic keys is
ensured through the application of eFuse blocks and an
eFuse controller, guaranteeing key immutability and restricting
key access solely to the required cryptographic accelerators.
Additionally, the integrated TRNG enables the generation of
cryptographic keys internally within the device [252].

In addition to these features, the ESP32-C3 includes de-
fenses against voltage glitching attacks. The ESP32-C3’s clock
can be driven by an external crystal, which may be sus-
ceptible to clock glitch attacks. In this type of attack, the
attacker introduces a momentarily higher-frequency signal to
disrupt the regular functioning of the targeted device. The
microcontroller includes a sensor that detects abnormal clock
pulses and resets the board to prevent the exploitation of this
attack [252]. For voltage glitches against its power supply,
the device has a brownout detector. This mechanism senses
the voltage provided, and if the voltage falls below a specific
threshold, it resets the board.

The ESP32-C3 does not have a TEE developed by Espressif,
but it does have a physical memory protection unit that can
be used by software to restrict access to specific regions of
memory [252]. This feature has been leveraged by researchers
to implement a TEE for the ESP32-C3 [253]. Therefore,
despite being an affordable SoC, the ESP32-C3 provides a
wide range of security features and defenses against hardware
attacks, as detailed in Table VII.

Our goal is to explain how hardware attacks can be executed
on an off-the-shelf board and how hardware can be leveraged
to mitigate these attacks. For our experiments, we will use an

Security primitives
- eFUSE OTP memory
- True random number generator
- Crypto accelerators (AES, RSA, SHA, HMAC)

Security features
- Secure boot
- Flash encryption
- TEE (third-party support)

Countermeasures - Brownout detector
- Clock signal sensor

TABLE VII: Security capabilities of the ESP32-C3

Ai-Thinker ESP-C3-13 [254], a development board equipped
with an Espressif ESP32-C3 SoC [250].

Subsection III-A4 analyzed hardware attacks, categorizing
them into three distinct groups. For the purpose of the con-
ducted study, we executed one attack from each group to
effectively demonstrate their impact and feasibility, namely:
voltage glitching (fault injection), timing attack (side-channel
attacks), and PCB-level attack (reverse engineering). To facil-
itate the execution of these attacks, a custom firmware was
developed on the software side, which provided an interface
accessible through serial communication. This firmware aimed
to emulate the functionalities typically found in a Home Area
Network (HAN) port, which simulates a restricted set of
features intended for technicians and safeguarded by a key.
Given the conventional exposure of such ports to external
access, they represent a logical target for potential attackers.

Espressif provides two development frameworks for this
device: ESP-IDF and Arduino-esp32 [255]. Unfortunately,
both are based on RTOS, which hinders the execution of our
experiments since concurrent threads are running in the device.
Therefore, to ease the reproducibility of our demonstration, we
will create bare-metal software using mdk SDK [256], a third-
party SDK for bare-metal development on the ESP32-C3.

The software employed in this demonstration utilizes a
user-input password verification mechanism. The program
waits for the user to input a password, compares each
character of the inserted password with a predetermined
value that is hardcoded within the firmware, and provides
feedback regarding the accuracy of the entered password.
The complete source code of this software can be accessed
from the GitHub repository located at https://github.com/
MrSuicideParrot/esp32-c3-attacks. Furthermore, this reposi-
tory is a comprehensive resource for reproducing the demon-
stration, encompassing detailed instructions, attack scripts,
and firmware implementations incorporating countermeasures
against the demonstrated attacks. Researchers and readers are
encouraged to refer to this repository as an auxiliary tool to
understand the subsequent subsections.

A. Fault injection - voltage glitch

Voltage glitching is a specific case of fault injection. This
attack occurs when malicious actors modify a circuit’s voltage
to induce software errors. In our case, we will attack the SoC’s
power supply with the goal of under-volting the device in a
way that induces a malfunction.

The first step in performing this attack is understanding the
target’s power domains. The ESP32-C3 Technical Reference
Manual [252] specifies that this SoC has nine power domains

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 27

organized into three groups: Real Time Clock (RTC), digital,
and analog. The RTC group, as the name implies, includes
the RTC and the power management unit. The digital group is
responsible for powering the digital part of the SoC, which in-
cludes different cryptographic accelerators, the CPU, and digi-
tal pins. Finally, the analog group is in charge of the embedded
radios. The ESP32-C3 datasheet [250] describes how these
groups manifest in the physical world. The ESP32-C3 has four
power supply input pins: VDDA1, VDDA2, VDD3P3 RTC,
and VDD3P3 CPU, which directly correspond to the power
domain groups.

The power supply for various groups within the system is
as follows:

• VDDA1 and VDDA2 provide power to the analog group.
• VDD3P3 RTC powers the RTC group.
• VDD3P3 CPU is responsible for powering the digital

group.

Given our objectives, a fault should be injected into the
energy source responsible for powering computation opera-
tions, which in this case is the VDD3P3 CPU. Additionally,
to successfully execute this attack, this pin should be isolated
from the rest of the board to inject a faulty voltage, and any
decoupling capacitor that may affect this power line must be
removed. A decoupling capacitor suppresses high-frequency
noise in power supply signals, which means any temporary
drops in its voltage will be rectified. Therefore, any decoupling
capacitor would decrease our probability of success since it
will suppress any slight variation in the voltage feed to the
circuit.

Typically, SoC datasheets explain the different decoupling
capacitors that should be present to ensure the reliable op-
eration of an SoC. This should be the starting point for
any attacker. In our case, it is no different; the ESP32-C3’s
datasheet [250] states that VDD3P3 CPU should have a de-
coupling capacitor attached to it, and it is also responsible for
supplying power to VDD SPI. Consequently, any capacitors
on this line should be removed to minimize the potential for
interference in our attack. The ESP-C3-13 development board

specification includes a diagram of the connections and the
associated decoupling capacitors identified as C110 and C111
(see Schematic 5 - on page 14 of [254]). Unfortunately, in
our case, the PCB is not labeled, which means it is necessary
to manually identify the components we mentioned earlier and
remove them.

The components can be identified with the help of a mul-
timeter in continuity mode to check for electrical continuity
and an optical microscope to follow the trace connected to the
SoC’s pin that corresponds to our target. Using this process,
we identified the two decoupling capacitors, C110 and C111
(Figure 5C), that should be removed with a soldering iron or a
hot air rework station. In the case of the ESP-C3-13, we had
to perform an intermediary step before proceeding with the
component’s identification, which involved removing the metal
shield protecting these components against electromagnetic
interference (Figure 5A and B).

The next step to prepare for the execution of a fault
injection is to isolate the target’s pin from the rest of the
board. The idea is to find a place on the top or bottom
PCB layer where the power of the VDD3P3 CPU is being
routed and with enough room to use a scalpel to cut the
electrical connection. This procedure is similar to the one
used to find decoupling capacitors, where we should probe the
board with the multimeter for electrical continuity and follow
the electrical traces until we find a suitable place to cut it. In
the ESP-C3-13, we found this place on the bottom layer of
the board (Figure 6B) near a via placed beneath the ESP-C3
chip that connects to the VDD3P3 CPU pad (Figure 6A).

At this point, we have made every physical modification
needed to perform this attack, and we should solder a small
cable to the target pin’s pad to be able to inject power
externally (Figure 6C).

On the hardware side, our setup involves the uti-
lization of two analog switches: the TS12A4514P and
TS12A4515P [257]. These switches play a crucial role in
enabling the transition from the normal operating voltage
to the faulty voltage during the fault injection process. In

Fig. 5: Steps involved in the identification of decoupling capacitors

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 28

Fig. 6: Identification and isolation of the printed circuit board (PCB) trace that feeds power to the VDD3P3 CPU

our experimental configuration, we incorporated two external
power supplies. The first power supply provides a fixed voltage
of 3.3 volts, while the second allows variable voltage adjust-
ments (Figure 7). Additionally, we employ a ChipWhisperer-
Nano [258], a dedicated hardware platform designed to receive
signals from the target board and control the power supply
based on predefined parameters.

TS12A4515P

COM
1

NC
2

NC
3

GND
7

NC
5

V+
4

IN
6

NC
8

VDD3P3_CPU GLITCH
1k
R1

VCC

VCC

1.4v

3.3v
VCC

TS12A4514P

COM
1

NC
2

NC
3

GND
7

NC
5

V+
4

IN
6

NO
8

GND

VCC

VDD3P3_CPU

GND

TX
RX

EN
GPIO10

+3.3v
GND
nRST

IO4

ChipWhisperer-Nano

ESP32-C3

GLITCH GLITCH

GND
VCC VCC

GND

VDD3P3_CPU

RX
TX

GND
+3.3v VCC

GND

FT232H

Fig. 7: Schematic showing the connection of the two analog
switches, ChipWhisper and the target board

The TS12A4514P and TS12A4515P are two low-voltage
analog switches with similar specifications but with opposite
behavior. The TS12A4514P is a normally open switch, and
the TS12A4515P is a normally closed switch, which means
that when connected, one of them has the switch opened, and
the other is permanently closed.

The ChipWhisperer-Nano [258] is a platform developed to
ease the education of embedded security. We leveraged its
glitch capabilities to trigger the voltage switch. This board is
able to receive a trigger in a General-Purpose Input/Output
(GPIO) pin and make another GPIO pin change from high
to low during the duration and delay we defined. This pin

will be connected to the analog switches to change between
the two power supplies. However, any microcontroller could
be used to control these switches. It is necessary to have
firmware that ensures reduced delay between the trigger and
the voltage change and offers an API that allows us to
customize the duration of the glitch programmatically. We
opted for the ChipWhisperer-Nano because it already has
optimized firmware for reduced delay between the trigger and
glitch and a Python API that enables customization of the
different attack parameters.

Finally, to successfully execute an under-voltage glitch
attack, we need to manipulate three key variables, namely:

• Voltage: This refers to the specific voltage level that is
injected into the target device during the glitch attack.

• Glitch width: This represents the duration of the glitch
itself, signifying the span of time for which the voltage
injection is maintained at the chosen level.

• Glitch offset: The glitch offset corresponds to the duration
between receiving the trigger signal to initiate the glitch
attack and the actual commencement of the voltage
injection.

All these variables need to be determined through experi-
mentation. An attacker may utilize a development board that
shares the same SoC as the target device to pinpoint the
precise variables required for a reliable exploit. Using this
development board, the attacker can create custom firmware
specifically designed to detect malfunctions or abnormalities
within the device. Typically, this firmware includes a loop that
increments a variable and, at the end, a verification step that
checks the result of the algebraic operation and loop counter.
Any deviations from the expected behavior indicate a fault
or an unintended alteration in the system’s execution [17].
In our case, we have full access to the device allowing us
to flash a loop and determine the correct parameters. We
created firmware that implements the loop test for the ESP-
C3. 3 Furthermore, in this firmware, an ESP-C3 pin is set

3https://github.com/MrSuicideParrot/esp32-c3-attacks/blob/main/attacks/
voltage-glitch/loop-test/main.c

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 29

to a ”high” logic level when the code enters the loop. This
deliberate action serves to facilitate the synchronization of the
glitch injection with the code execution.

To discover the voltage value to inject, one approach is to
test a low-voltage value at which the device would reset with
the smallest glitch width possible, and then gradually increase
this value until it no longer resets at the smallest glitch width.
In our case, we began with a value of 1 volt and ended up
with 1.4 volts. We will use this value for the remainder of
this experiment. However, it is essential to keep in mind that
if we do not achieve the desired results in the next phase, we
may need to repeat this step and experiment with other voltage
values.

Identifying the glitch width follows a similar process. We
can test the attack against the loop test with incremental widths
multiple times. After each execution, we observe and record
which parameters did not affect the device and which ones
created a malfunction. Additionally, we can experiment with
different combinations of different glitch offsets to test the
effect of the glitch on different instructions.

In our case, we set a glitch offset known to target the
middle of the test loop (4.15 microseconds) and tested glitch
widths ranging from 8.3 nanoseconds to 83 nanoseconds, with
increments of 8.3 nanoseconds. For each width, we executed
the test 50 times. Ultimately, we observed glitches with a
glitch width of 49,8 nanoseconds. To confirm that our glitch
offset aligned with the test loop, we used a logic analyzer to
monitor the trigger and glitch pin, ensuring that the glitch
started while the trigger was active. 4 By following these
steps, we successfully identified the parameters required to
execute a successful glitch attack on this board, allowing us
to bypass the authentication process. 5

Countermeasures

On the hardware side, the primary countermeasure against
this type of attack is a voltage sensor available in the SoC,
referred to by this vendor as a brownout detector. This detector
resets the board if the voltage provided falls below a specific
threshold, which is 2.7 volts by default. One advantage of this
sensor is that it is enabled by default, eliminating the need
for developers to enable it explicitly. However, it is worth
noting that this sensor does not detect over-voltage, meaning
an attacker may still be able to exploit the device using this
attack vector. In the past, attackers used over-voltage to bypass
the device’s secure boot [259]. This issue was addressed with
a new hardware revision that hardened the device against
voltage fault injection attacks. Unfortunately, no further details
are provided about the changes that were introduced. Similar
to the brownout detector, as mentioned before, the ESP-C3
also includes a clock sensor to detect clock glitches, which is
enabled by default.

Nevertheless, we can also implement some software coun-
termeasures in our code. It is important to remember that

4https://github.com/MrSuicideParrot/esp32-c3-attacks/blob/main/attacks/
voltage-glitch/LoopTestDiscovery.ipynb

5https://github.com/MrSuicideParrot/esp32-c3-attacks/blob/main/attacks/
voltage-glitch/VoltageGlitchExploit.ipynb

software countermeasures may introduce performance penal-
ties and often only protect specific code functionality. For
instance, to protect key verification against fault injections,
we can attempt to deflect or detect the attacks [91]. Attack
deflection involves running our check at a random point in
time, decreasing the reliability of any attack. Attack detection
entails performing the operation we aim to protect multiple
times, preferably implemented in different ways. In our case,
this would mean verifying the key twice at different times. In
summary, both techniques aim to reduce the success rate of
any attack rather than completely mitigating it.

A modified version of the firmware incorporating these
mitigations, including the activation of the brownout detection,
is accessible on the dedicated GitHub repository. 6

B. Side-channel attack - timing attack

A timing attack is a specific type of side-channel attack that
leverages small differences in device response times to extract
information about the target. This family of attacks is broad
and can encompass any device interface with the exterior or
specific signals activated by a particular behavior. For instance,
it can involve scenarios such as turning on an LED when
password verification is correct or writing to EEPROM at the
end of an operation.

Our target has a serial interface protected by a password.
We will monitor the time the device takes to respond to our
login attempt. If the response time depends on the correctness
of our input, we can potentially brute-force each character of
the password individually.

For our setup, we used a Saleae Logic 8 logic analyzer [260]
to monitor the serial lines of the target device, enabling us
to capture and analyze the communication between the device
and other connected entities. Additionally, we utilized an FTDI
FT232H serial UART adapter [261] to interact with the serial
interface and the ChipWhisperer-Nano [258] to reset the target
board after each attempt. The hardware setup is similar to the
one presented in Figure 7, with the addition of attaching Saleae
Logic 8’s probes to the TX and RX lines of the device.

We developed a script 7 that uses the FT232H serial UART
adapter to perform authentication attempts on the target device
and analyzes the device’s response time to our authentication
requests with the logic analyzer. The methodology for this
attack follows a systematic approach. Attackers select a pool
of characters that may potentially be part of the password.
Subsequently, they iterate through each index of the password
and perform a brute-force attack, attempting all possible
characters for that specific index independently. This step-by-
step process allows for an exhaustive search for the correct
password combination.

To illustrate the process, an attacker initiates the brute
force attack by systematically testing all possible characters
for the first position of the password, and each character is
tested five times. The time the device takes to respond to the

6https://github.com/MrSuicideParrot/esp32-c3-attacks/tree/main/attacks/
timing-attack/patched firmware

7https://github.com/MrSuicideParrot/esp32-c3-attacks/blob/main/attacks/
timing-attack/TimeBasedSideChannelAttackExploit.ipynb

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 30

authentication request is measured, and these measurements
are recorded and averaged. After completing this initial step,
the collected response times are analyzed to identify the
correct character, which corresponds to the longest response
time. This character is considered the correct character for
the first position of the password, and the process is repeated
for the subsequent password positions. At each position, the
correct characters from the previous positions have already
been determined, allowing for the concatenation of the known
partial password with the attempts for the new position. This
iterative process continues until all password positions have
been successfully identified, resulting in the recovery of the
complete password through a series of timing measurements
and analysis. With this technique, we were able to brute-force
the password that gives access to the debug interface.

Countermeasures
Side-channel attacks can be mitigated by eliminating any

information leakage that could be exploited. In our demonstra-
tion, we conducted a timing attack based on the information
leaked by the response time of the board. However, since this
vulnerability stems from software, hardware-based solutions
alone cannot provide mitigation. This issue must be addressed
at the software level by ensuring consistent response times or
introducing randomized delays to prevent information leakage.
Even though we only explored this program to perform a
timing attack, it is also vulnerable to SPA. The time it takes
to execute can be observed in a power trace of the CPU,
and even if we implement the countermeasures described
above, an attacker can still identify the different patterns of
password verification in the power consumption, bypassing
this countermeasure. The device should monitor its power
consumption and adjust it to ensure that information about
the executing operations is not leaked.

The ESP-C3-13 does not include any form of voltage
monitoring or a metal shield that could prevent some types
of side-channel attacks on the hardware side. Moreover, this
problem affects not only the normal execution of code but
also the cryptographic coprocessors, which leak information
through power consumption. As evidence of this concern, it
is documented that attackers have previously exploited similar
vulnerabilities in microcontrollers from the same family [262].

Furthermore, an additional software-based mitigation ap-
proach involves comparing the user input not directly with
the correct key but instead with a masked version of the user
input, as proposed by Standaert et al. [263]. For instance, you
can store the key hashed, apply the same hash function to the
user input, and compare the two hashes. This way, there is no
direct relation between the user input and the time it takes to
verify the key.

Additionally, the security hardware integrated into this
board offers potential support for implementing this solution.
The board’s cryptographic accelerator can generate a hash of
the user input, and the resulting hashed key can be securely
stored in the eFuse OTP memory. A patched firmware exam-
ple that incorporates this mitigation against the side-channel
attack, utilizing the cryptographic accelerator, is available on

our GitHub repository. 8

C. Printed circuit board level attack

PCB-level attacks leverage existing features of the PCB to
enable reverse engineering of the firmware or its signals. In
this case, we will exploit our physical access to the board to
interact directly with its EEPROM and read any firmware or
secrets stored there.

The first step in executing this attack is to identify the
EEPROM on the board in question. The simplest method is to
refer to the SoC’s datasheet, determine the pins responsible for
connecting external memory, and then trace these connections
on the board until we find a component. Normally, EEPROMs
have their part number engraved on their package. An attacker
should use this reference to find its datasheet and select
the necessary hardware to interact with it. In the case of
the ESP32-C3, we found an EEPROM with the inscription
”25VQ16ATIG” (Figure 8), which is a memory supporting
the Serial Peripheral Interface (SPI) protocol and works with
voltages from 2.3 to 3.6 volts, capable of storing 16 megabits.

Fig. 8: ESP32-C3’s EEPROM

Extracting data from an EEPROM requires a tailored ap-
proach, involving a hardware board capable of interfacing
with SPI, commonly called a programmer board, and suitable
software to control it. Each control software typically has a set
of EEPROMs with which it is compatible and should be the
basis for our choice. The programmer needs to be compatible
with the chosen software and work with the operating voltage
of the EEPROM. To read the ZB25VQ16, we selected the
XGecu TL866II Plus [264] EEPROM programmer and its
companion software, as they support this specific EEPROM
model.

From the physical perspective, there are two ways to attach
a programmer to the EEPROM: unsolder the IC from the PCB
or perform in-circuit programming [265], both with advantages

8https://github.com/MrSuicideParrot/esp32-c3-attacks/tree/main/attacks/
timing-attack/patched firmware

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 31

and disadvantages. Unsoldering the IC ensures that the read
operations of the programmer are not interrupted by actions of
the device’s CPU. However, this is a more intrusive operation
and may damage the IC and the PCB if performed by an
unskilled person. On the other hand, in-circuit programming
aims to interact with the IC without unsoldering it from the
PCB. It is simpler than unsoldering the IC, as for standard ICs,
some adapters can be used to attach to the IC’s pins without
removing it from the PCB (Figure 9). Unfortunately, this
approach comes with a few drawbacks. When performing the
reading procedure, it is necessary to power on the EEPROM.
However, since the EEPROM is still connected to the PCB,
powering it on may inadvertently activate other components.
If the CPU is powered on during this operation, it can interact
with the EEPROM and disrupt the programmer’s operations,
leading to undesirable interference.

Fig. 9: SOP8 adapter attached to the ZB25VQ16 to perform
in-circuit programming

We opted for performing in-circuit programming. To prevent
any interference from the CPU during this operation, we will
reuse the board prepared for the voltage glitch since it has
its VDD3P3 CPU separated from the PCB, and therefore
the CPU will not power on. However, the same result can
be achieved with built-in features, even if its power supply
pin is not isolated. Most CPUs have ways to keep the CPU
halted even when it has power. Typically, this is implemented
as a GPIO pin that, when in a specific logic level, prevents the
CPU from booting. In the case of the ESP32-C3, the pin is
the CHIP EN, and when it is grounded, the chip will remain
powered off [250].

Upon successfully retrieving the EEPROM data, an attacker
transitions to the next attack phase, reverse engineering. The
EEPROM dump has different memory regions mapped on it,
from program data to file systems that are used to store infor-
mation. Our goal is to bypass user authentication. Therefore,
we must find and disassemble the program data to recover
the password. This task is very similar to reverse engineering
an executable from a computer. However, computer programs

have a standard format that can be easily imported into disas-
semblers, and firmware requires a custom approach according
to our target. We will use the Ghidra disassembler [266] for
this attack because it is open-source and supports a wide
range of CPU architectures, including RISC-V. Additionally,
this software includes a decompiler, which eases the reverse
engineering task.

During execution, the microcontroller abstracts the interac-
tions with the EEPROM by incorporating it into its address
space. This behavior is known as memory-mapped peripherals
and is employed to interact with any peripheral. For example,
if the microcontroller wishes to interact with its cryptographic
accelerators, it must read and write to a specific memory
region. The disassembler needs to be aware of these memory
regions and their associations with peripherals in order to
disassemble the firmware. The memory mapping information
is available in the CPU’s technical manual, allowing it to be
manually defined in the disassembler.

Additionally, it is crucial to understand the boot process
of the microcontroller to load the firmware into memory
correctly. The ESP32-C3 has a first-stage bootloader stored
in its internal ROM, which cannot be altered. This bootloader
initializes the CPU and transfers control to the second-stage
bootloader [255]. The second-stage bootloader is stored at
offset 0 in the EEPROM and is loaded into memory by the
first-stage bootloader. Therefore, the second-stage bootloader
can be customized and must be the starting point of our reverse
engineering efforts.

We are using the mdk [256] SDK to implement our program,
so we analyzed this SDK to understand the behavior of the
second-stage bootloader. Regardless of our prior knowledge, in
many cases, the SDK being utilized can be identified by ana-
lyzing the visible strings present in the firmware. The firmware
produced by the mdk starts with an eight-byte header, with the
last four bytes representing the address where the execution of
the second-stage bootloader should begin. Subsequently, there
is a 16-byte header containing metadata about the firmware.
Finally, the firmware consists of multiple memory segments,
each delineated by information specifying its memory address
and size, facilitating its proper allocation in memory.

With all the gathered information, it is possible to import
the firmware into Ghidra as a raw file, create the necessary
memory regions, and ensure the correct placement of the
firmware in memory. With this, Ghidra can disassemble the
firmware accurately, allowing us to delve into the firmware
and ultimately retrieve the password. Further instructions and
code samples can be found in the corresponding GitHub
repository 9 for reference and in-depth analysis.

Countermeasures
With the exception of the embedded EEPROM on the SoC,

it will always be possible to interact with the EEPROM
by unsoldering it from the PCB or performing in-circuit
programming. From a physical perspective, preventing this
type of attack is difficult. We can choose EEPROM packages

9https://github.com/MrSuicideParrot/esp32-c3-attacks/blob/main/attacks/
pcb-level-attack/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 32

that are more challenging to use for in-circuit programming,
but a skilled attacker can always unsolder the IC.

Therefore, it is crucial to employ encryption mechanisms
to ensure the security of firmware and information stored in
the EEPROM. However, implementing flash encryption can be
complex, especially on devices that lack native support. One
of the primary challenges involves finding a secure location to
store the encryption key and having sufficient computational
capabilities to perform the encryption and decryption opera-
tions on the flash memory.

As stated at the beginning of this section, the ESP32-C3
supports flash encryption based on eFuse OTP memory to
store the encryption key and an AES cryptographic accelerator
to encrypt and decrypt the flash memory. By default, the
flash encryption feature is typically disabled and needs to
be explicitly enabled by the developer. This feature operates
independently of the running application but requires spe-
cific configurations, such as a different partition table and
bootloader. Currently, only the ESP-IDF SDK supports this
operation [267]. The lack of availability of flash encryption
on the ESP32-C3 or other microcontrollers is not due to
restrictions imposed by a specific framework. Instead, it is
primarily because other frameworks have not yet implemented
the necessary software components to leverage the hardware
features of the ESP32-C3 for flash encryption. Additionally,
an increased level of protection against attacks targeting the
EEPROM can be achieved by enabling secure boot. This
security measure requires the second-stage bootloader and
application to be signed by a public key securely stored in
eFuse memory.

V. CHALLENGES AND FUTURE DIRECTIONS

During our research, we investigated various technologies
that can be used to facilitate identity and authentication oper-
ations in IoT systems. Our examination revealed the existence
of functional prototypes for identity and authentication sys-
tems, and some of these solutions have even been implemented
in real-world production environments. However, despite the
availability of these technologies, we observed a lack of
widespread adoption in IoT devices.

In the past, the cost of incorporating specialized hardware
has often been cited as a hindrance to adopting identity and
authentication solutions in IoT devices. However, as pointed
out by other researchers [19], this notion is a misconception.
Our analysis aligns with this perspective, demonstrating that
hardware solutions are available across various price ranges,
including options suitable for smaller budgets.

The lack of adoption of hardware-based solutions in IoT
devices can be attributed, in part, to a disregard for security
considerations. However, it is worth noting that some devices
implement robust software-level protection measures while
choosing not to incorporate hardware trust anchors. In such
cases, the threat model for these devices likely accepts that
the risk of hardware attacks or the cost associated with
hardware solutions outweighs the value of the information
being protected.

Regardless of the threat model in place for a specific
device, the challenges listed in Section II-B affect all devices.

As mentioned throughout this work, technologies can be
employed to overcome these challenges. Consequently, it is
essential to explore alternative factors that contribute to the
limited adoption of these technologies, as hardware cost alone
does not account for the prevailing situation. Based on our
analysis, we identify two challenges that may be hindering
the widespread use of hardware-based solutions, even when
the required hardware is affordable or already included in
the device but remains unused: the lack of SDK support and
standardization.

A. Lack of software development kit support
Each technology in the IoT landscape typically comes with

its own library or software stack that provides low-level APIs
for interacting with it. These APIs allow developers to leverage
the capabilities of the technology to build their solutions.
This involves working at a lower level, interacting directly
with the technology’s APIs to implement the desired identity
functionality. Therefore, increases the cost of development due
to the time spent developing these features and the required
specialized labor.

Moreover, designers often do not develop device software
from scratch but instead use an existing SoC as a foundation
for adding their features. This fact decreases the production
cost and enables quicker development cycles. However, if
the SDKs do not provide support for a particular technology
or feature, it can indeed discourage software designers from
incorporating that technology into their devices for the same
reasons we mentioned earlier. Therefore, SDKs are the key to
the widespread adoption of these technologies since they can
facilitate the integration of security technologies and features.

One way SDKs could decrease the integration complexity of
these technologies is by providing Hardware Abstraction Layer
(HAL)s. A HAL is a set of APIs that abstract the complexity
of the hardware underneath it [268]. These APIs are shared
by different components that have the same function. Thus,
developers trying to integrate these components into their
system only need to be familiar with a set of APIs independent
of the component manufacturer.

Another direction that SDKs can take is to provide au-
thentication and identity frameworks that incorporate these
technologies and abstract the complexity of the underlying
hardware. These frameworks can leverage HALs to support
various technologies. However, this should remain transparent
to the user, and the integration of these frameworks and tech-
nologies must be seamless. Without this seamless integration,
designers may prefer traditional systems over implementing
their custom solutions with hardware security, which demands
experienced personnel and is error-prone.

During our experimentation phase, we encountered a lack of
support and difficulty in using hardware technologies. Among
the two frameworks developed by Espressif, only one fully
supports all available security features. However, even in this
framework, it only offers low-level access. This means that a
developer wishing to harness these technologies must possess
knowledge of them and understand how to use them.

The Zephyr RTOS serves as an example of an SDK that
already incorporates some of these suggestions. This SDK

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 33

and its RTOS are built on top of a HAL for most operations,
simplifying the developer’s experience with just one API to
learn. However, this approach is not extended to all compo-
nents. For instance, while there is an API to streamline the use
of TRNGs and cryptographic operations, other technologies,
like eFuses lack abstraction and necessitate hardware-specific
APIs. Therefore, there is still room for improvement.

B. Lack of standardization

One way to encourage hardware-based IoT solutions is to
integrate these technologies into a common SDK. However,
when it comes to high-level features, such as authentication
and identity frameworks, the lack of standardization in IoT de-
vices hampers their inclusion in SDKs. There are no standards
for these features, and each vendor tends to implement its
own framework, resulting in increased development diversity
and effort or not being included at all, with its complete
development delegated to the system designer.

A consequence of the lack of standardization in some of
the technologies presented is the shortage of products with
a PUF capable of CRP authentication. Strong PUFs promise
a way to uniquely identify a device with an identity tied
to its hardware without requiring energy- or computation-
expensive cryptographic operations during its authentication.
This approach is a novelty compared to the other solutions
presented in this work that use classical identity schemes.

Despite its potential, when we searched for PUFs in the
market, we only found off-the-shelf components that incorpo-
rate PUFs for key generation or storage. This limitation has
already been observed in prior research [269] and remains
unchanged. Therefore, while PUF technology holds great
promise for the IoT field, current products only tap into a
fraction of their potential by not utilizing CRP schemes for
authentication. This absence presents a significant challenge
in fully harnessing this technology. Furthermore, identity and
authentication frameworks based on CRP are not standardized,
making them unsuitable for environments that require compli-
ance with security standards such as FIPS or NIST.

One initiative that tries to oppose this fact is the Trusted
Firmware initiative by Linaro [270], which provides a refer-
ence implementation of a secure processing environment for
microcontrollers. Despite being aimed at ARM processors,
some of its components are architecture-independent, which
means they can be applied to any microcontroller. Moreover,
Linaro states that it is committed to using this project to
help create conditions for secure processing across IoT, in-
dependently of their architectures [271]. An example of this
commitment is the MCUboot [272], a secure bootloader that
is independent of the OS and hardware and is already being
used by multiple OSs. This project offers a standardized way
to update the device’s firmware while ensuring its integrity
and authenticity during boot.

On the other hand, when standardization is applied to
hardware components, it helps move the burden of integrating
hardware security technologies from SDK developers to manu-
facturers. Standardizing component APIs is also advantageous
for system integrators, SDK developers, and manufacturers.

System integrators can easily change suppliers since, with a
common API, components may be easily swapped with others
with the same specifications. SDK developers only need to
handle a single API for multiple components, and technology
manufacturers can decrease their development costs and make
their products more competitive. This approach is already
being employed by some technologies, such as TEEs and SEs
standards promoted by the GlobalPlatform [140], [156]. Un-
fortunately, these initiatives target a subset of the components
presented earlier.

In general, standardization initiatives encourage the
widespread adoption of high-level security features and
security hardware components. The successful integration of
these mechanisms into the IoT context heavily depends on
their incorporation into widely used SDKs. Standardizing
these mechanisms would streamline their inclusion in a
common SDK, thereby boosting their adoption. Additionally,
international bodies should examine emerging authentication
methods, standardize them, and incorporate them into existing
certifications, such as those that leverage Strong PUFs.

In summary, the cost of hardware security in IoT devices
is not solely attributed to the additional hardware itself but
rather to the integration process with the rest of the device. To
address this prevailing trend, SDKs must encompass hardware-
based authentication and identity frameworks, simplifying the
incorporation of hardware RoT solutions into new systems.
Furthermore, the standardization of these frameworks is essen-
tial to avoid fragmentation among manufacturers’ frameworks
and minimize the learning curve associated with deploying
these technologies.

VI. CONCLUSION

IoT devices interact with our personal lives and manage
critical infrastructures. Thus, keeping them secure is a priority.
Identity and authentication play a vital role in the security of
these devices. Without them, it is impossible to guarantee the
device’s security, as we would be unable to assure the veracity
of any information. Nevertheless, identity and authentication
are considered open research challenges in IoT.

Resource-constrained devices, a lack of standardization, and
exposure to hardware attacks are only some of the reasons that
make identity and authentication in IoT so challenging. Over
the years, multiple researchers have advocated using hardware
to address these challenges. However, the widespread adoption
of hardware technologies supporting identity and authentica-
tion has yet to be seen.

During our work, we focused on hardware trust anchors
and their security features that can be exploited to develop
new identity and authentication systems.

We analyzed physical risks for IoT identity and identified
possible countermeasures. Our findings revealed that hardware
trust anchors must employ protections like multiple sensors,
active metal shields, and a defensive PCB design to safeguard
themselves against physical risks. Additionally, we explored
how challenging these risks are, as we cannot completely
mitigate them but can increase the difficulty of an attack.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 34

Considering these security features and challenges for IoT
identity in mind, we reviewed technologies available to de-
signers to develop new identity and authentication systems. In
this analysis, we included the following technologies: TRNGs,
masked ROMs and OTP memories, crypto accelerators, SE,
TEEs, and PUFs.

In addition to the theoretical analysis and exploration of
technologies, this research paper presents an experimental
evaluation demonstrating hardware trust anchors’ effectiveness
in mitigating attacks on IoT identity. The empirical evidence
from these experiments reinforces the significance of hardware
trust anchors in enhancing security and developing effective
identity solutions for IoT devices. Moreover, the practical
implementation showcased through the case study of a smart
meter connected to a utility company via a mesh network
exemplifies the successful integration of multiple technologies
and demonstrates the value of hardware trust anchors in the
real-world.

To sum up, there are multiple candidate technologies that
might support new identity and authentication systems, aiming
at different price points. These technologies can overcome
some of the challenges holding back identity and authentica-
tion in IoT by using common cryptographic algorithms in low-
power devices and offering resilience against hardware attacks.
Unfortunately, the complex integration process of some of
these technologies, the required knowledge to effectively use
them, and the lack of standardization continue to hinder the
widespread use of hardware trust anchors in IoT.

REFERENCES

[1] A. Nordrum et al., “Popular internet of things forecast of 50 billion
devices by 2020 is outdated,” IEEE spectrum, vol. 18, no. 3, 2016.

[2] D. Hanes, G. Salgueiro, P. Grossetete, R. Barton, and J. Henry, IoT
fundamentals: Networking technologies, protocols, and use cases for
the internet of things. Cisco Press, 2017.

[3] D. Wang, D. Chen, B. Song, N. Guizani, X. Yu, and X. Du, “From iot
to 5g i-iot: The next generation iot-based intelligent algorithms and 5g
technologies,” IEEE Communications Magazine, vol. 56, no. 10, pp.
114–120, 2018.

[4] M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I. A. T. Hashem,
A. Siddiqa, and I. Yaqoob, “Big iot data analytics: Architecture,
opportunities, and open research challenges,” IEEE Access, vol. 5, pp.
5247–5261, 2017.

[5] M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. Goren, and
C. Mahmoudi, “Fog computing conceptual model,” Tech. Rep., mar
2018.

[6] N. Yousefnezhad, A. Malhi, and K. Främling, “Security in product
lifecycle of IoT devices: A survey,” Journal of Network and Computer
Applications, vol. 171, p. 102779, dec 2020.

[7] A. R. H. Hussein, “Internet of things (iot): Research challenges
and future applications,” International Journal of Advanced Computer
Science and Applications, vol. 10, no. 6, pp. 77–82, 2019.

[8] H. U. Rehman, M. Asif, and M. Ahmad, “Future applications and
research challenges of iot,” in 2017 International conference on infor-
mation and communication technologies (ICICT). IEEE, 2017, pp.
68–74.

[9] S. A. Al-Qaseemi, H. A. Almulhim, M. F. Almulhim, and S. R.
Chaudhry, “Iot architecture challenges and issues: Lack of standardiza-
tion,” in 2016 Future Technologies Conference (FTC). IEEE, 2016,
pp. 731–738.

[10] M. Nawir, A. Amir, N. Yaakob, and O. B. Lynn, “Internet of things
(iot): Taxonomy of security attacks,” in 2016 3rd International Con-
ference on Electronic Design (ICED). IEEE, 2016, pp. 321–326.

[11] A. Cirne, P. R. Sousa, J. S. Resende, and L. Antunes, “Iot security
certifications: Challenges and potential approaches,” Computers &
Security, vol. 116, p. 102669, 2022.

[12] Z.-K. Zhang, M. C. Y. Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen,
and S. Shieh, “Iot security: ongoing challenges and research opportu-
nities,” in 2014 IEEE 7th international conference on service-oriented
computing and applications. IEEE, 2014, pp. 230–234.

[13] X. Zhu and Y. Badr, “A survey on blockchain-based identity manage-
ment systems for the internet of things,” in 2018 IEEE International
Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData).
IEEE, jul 2018.

[14] K. Chen, S. Zhang, Z. Li, Y. Zhang, Q. Deng, S. Ray, and Y. Jin,
“Internet-of-things security and vulnerabilities: Taxonomy, challenges,
and practice,” Journal of Hardware and Systems Security, vol. 2, no. 2,
pp. 97–110, 2018.

[15] G. Loukas, Cyber-physical attacks: A growing invisible threat.
Butterworth-Heinemann, 2015.

[16] S. Sidhu, B. J. Mohd, and T. Hayajneh, “Hardware security in iot
devices with emphasis on hardware trojans,” Journal of Sensor and
Actuator Networks, vol. 8, no. 3, p. 42, 2019. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8761062

[17] C. O. Jasper van Woudenberg, The Hardware Hacking
Handbook. Random House LCC US, Dec. 2021. [Online].
Available: https://www.ebook.de/de/product/31189064/jasper van
woudenberg colin o flynn the hardware hacking handbook.html

[18] M. Roel, “Physically unclonable functions: Constructions, properties
and applications,” Katholieke Universiteit Leuven, Belgium, 2012.

[19] B. Pearson, L. Luo, Y. Zhang, R. Dey, Z. Ling, M. Bassiouni, and
X. Fu, “On misconception of hardware and cost in iot security and
privacy,” in ICC 2019 - 2019 IEEE International Conference on
Communications (ICC), 2019, pp. 1–7.

[20] I. Butun, A. Sari, and P. Österberg, “Hardware security of fog
end-devices for the internet of things,” Sensors, vol. 20, no. 20, 2020.
[Online]. Available: https://www.mdpi.com/1424-8220/20/20/5729

[21] A. Ehret, K. Gettings, B. R. Jordan, and M. A. Kinsy, “A survey on
hardware security techniques targeting low-power soc designs,” in 2019
IEEE High Performance Extreme Computing Conference (HPEC),
2019, pp. 1–8.

[22] W. Hu, C.-H. Chang, A. Sengupta, S. Bhunia, R. Kastner, and H. Li,
“An overview of hardware security and trust: Threats, countermeasures,
and design tools,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 40, no. 6, pp. 1010–1038, 2021.

[23] E. T. Michailidis, D. G. Kogias, and I. Voyiatzis, “A review on
hardware security countermeasures for iot: Emerging mechanisms and
machine learning solutions,” in Proceedings of the 24th Pan-Hellenic
Conference on Informatics, ser. PCI ’20. New York, NY, USA:
Association for Computing Machinery, 2021, p. 268–271. [Online].
Available: https://doi.org/10.1145/3437120.3437322

[24] I. Tudosa, F. Picariello, E. Balestrieri, L. De Vito, and F. Lamonaca,
“Hardware security in iot era: the role of measurements and instrumen-
tation,” in 2019 II Workshop on Metrology for Industry 4.0 and IoT
(MetroInd4.0&IoT), 2019, pp. 285–290.

[25] S. Akter, K. Khalil, and M. Bayoumi, “A survey on hardware security:
Current trends and challenges,” IEEE Access, pp. 1–1, 2023.

[26] K. Yang, D. Blaauw, and D. Sylvester, “Hardware designs for security
in ultra-low-power IoT systems: An overview and survey,” IEEE Micro,
vol. 37, no. 6, pp. 72–89, nov 2017.

[27] S. Cheruvu, A. Kumar, N. Smith, and D. M. Wheeler, Demystifying
internet of things security: successful iot device/edge and platform
security deployment. Springer Nature, 2020.

[28] C. Shepherd, G. Arfaoui, I. Gurulian, R. P. Lee, K. Markantonakis,
R. N. Akram, D. Sauveron, and E. Conchon, “Secure and trusted
execution: Past, present, and future - a critical review in the context
of the internet of things and cyber-physical systems,” in 2016 IEEE
Trustcom/BigDataSE/ISPA. IEEE, aug 2016, pp. 168–177.

[29] Y. Kabalci, “A survey on smart metering and smart grid communica-
tion,” Renewable and Sustainable Energy Reviews, vol. 57, pp. 302–
318, 2016.

[30] P. Mlynek, J. Misurec, Z. Kolka, J. Slacik, and R. Fujdiak, “Narrow-
band power line communication for smart metering and street lighting
control,” IFAC-PapersOnLine, vol. 48, no. 4, pp. 215–219, 2015.

[31] ITU-T, “Y.2720 : Ngn identity management framework,”
International Telecommunication Union, Tech. Rep., 2009.
[Online]. Available: https://www.itu.int/rec/dologin pub.asp?lang=e&
id=T-REC-Y.2720-200901-I!!PDF-E&type=items

[32] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC Press, dec 2018.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 35

[33] R. Maes, PUF-Based Entity Identification and Authentication. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 117–141. [Online].
Available: https://doi.org/10.1007/978-3-642-41395-7 5

[34] P. Angin, B. Bhargava, R. Ranchal, N. Singh, M. Linderman, L. B.
Othmane, and L. Lilien, “An entity-centric approach for privacy and
identity management in cloud computing,” in 2010 29th IEEE Sympo-
sium on Reliable Distributed Systems. IEEE, oct 2010.

[35] Y. Cao and L. Yang, “A survey of identity management technology,”
in 2010 IEEE International Conference on Information Theory and
Information Security. IEEE, dec 2010.

[36] M. Gaedke, J. Meinecke, and M. Nussbaumer, “A modeling approach
to federated identity and access management,” in Special Interest
Tracks and Posters of the 14th International Conference on World
Wide Web, ser. WWW ’05. New York, NY, USA: Association
for Computing Machinery, 2005, p. 1156–1157. [Online]. Available:
https://doi.org/10.1145/1062745.1062916

[37] D. W. Chadwick, Federated Identity Management. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 96–120. [Online]. Available:
https://doi.org/10.1007/978-3-642-03829-7 3

[38] S. Cantor, J. Moreh, R. Philpott, and E. Maler, “Metadata for the oasis
security assertion markup language (saml) v2. 0,” 2005.

[39] N. Sakimura, J. Bradley, M. Jones, B. De Medeiros, and C. Mortimore,
“Openid connect core 1.0,” The OpenID Foundation, p. S3, 2014.

[40] D. Divyabharathi and N. G. Cholli, “A review on identity and access
management server (keycloak),” International Journal of Security and
Privacy in Pervasive Computing (IJSPPC), vol. 12, no. 3, pp. 46–53,
2020.

[41] S. Cantor and T. Scavo, “Shibboleth architecture,” Protocols and
Profiles, vol. 10, p. 16, 2005.

[42] P. R. Sousa, J. S. Resende, R. Martins, and L. Antunes, “The case
for blockchain in IoT identity management,” Journal of Enterprise
Information Management, vol. ahead-of-print, no. ahead-of-print, jun
2020.

[43] D. Hardt, “The OAuth 2.0 Authorization Framework,” RFC 6749,
Oct. 2012. [Online]. Available: https://www.rfc-editor.org/info/rfc6749

[44] A. Jøsang and S. Pope, “User centric identity management,” in
AusCERT Asia Pacific information technology security conference.
Citeseer, 2005, p. 77. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.60.1563&rep=rep1&type=pdf

[45] J. Werner, C. M. Westphall, and C. B. Westphall, “Cloud
identity management: A survey on privacy strategies,” Computer
Networks, vol. 122, pp. 29–42, 2017. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1389128617301664

[46] S. Y. Lim, P. T. Fotsing, A. Almasri, O. Musa, M. L. M. Kiah, T. F.
Ang, and R. Ismail, “Blockchain technology the identity management
and authentication service disruptor: a survey,” International Journal
on Advanced Science, Engineering and Information Technology, vol. 8,
no. 4-2, pp. 1735–1745, 2018.

[47] A. Mühle, A. Grüner, T. Gayvoronskaya, and C. Meinel, “A survey on
essential components of a self-sovereign identity,” Computer Science
Review, vol. 30, pp. 80–86, 2018.

[48] Q. Feng, D. He, S. Zeadally, M. K. Khan, and N. Kumar, “A survey
on privacy protection in blockchain system,” Journal of Network and
Computer Applications, vol. 126, pp. 45–58, 2019.

[49] P. Mahalle, S. Babar, N. R. Prasad, and R. Prasad, “Identity
management framework towards internet of things (iot): Roadmap
and key challenges,” in International Conference on Network Security
and Applications. Springer, 2010, pp. 430–439. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-642-14478-3 43

[50] K.-Y. Lam and C.-H. Chi, “Identity in the internet-of-things (iot):
New challenges and opportunities,” in International Conference on
Information and Communications Security. Springer International
Publishing, 2016, pp. 18–26. [Online]. Available: https://link.springer.
com/content/pdf/10.1007/978-3-319-50011-9 2.pdf

[51] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE internet of things journal, vol. 3, no. 5, pp.
637–646, 2016.

[52] T. Nandy, M. Y. I. B. Idris, R. Md Noor, L. Mat Kiah, L. S. Lun, N. B.
Annuar Juma’at, I. Ahmedy, N. Abdul Ghani, and S. Bhattacharyya,
“Review on security of internet of things authentication mechanism,”
IEEE Access, vol. 7, pp. 151 054–151 089, 2019.

[53] M. El-hajj, A. Fadlallah, M. Chamoun, and A. Serhrouchni, “A survey
of internet of things (iot) authentication schemes,” Sensors, vol. 19,
no. 5, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/
19/5/1141

[54] M.-O. Pahl and L. Donini, “Giving iot services an identity and
changeable attributes,” in 2019 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM). IEEE, 2019, pp. 455–461.

[55] R. Román-Castro, J. López, and S. Gritzalis, “Evolution and trends in
iot security,” Computer, vol. 51, no. 7, pp. 16–25, 2018.

[56] K. Zhao and L. Ge, “A survey on the internet of things security,” in
2013 Ninth International Conference on Computational Intelligence
and Security, 2013, pp. 663–667.

[57] R. Roman, P. Najera, and J. Lopez, “Securing the internet of things,”
Computer, vol. 44, no. 9, pp. 51–58, 2011.

[58] H. A. Abdulghani, N. A. Nijdam, A. Collen, and D. Konstantas, “A
study on security and privacy guidelines, countermeasures, threats: Iot
data at rest perspective,” Symmetry, vol. 11, no. 6, p. 774, 2019.

[59] M. Katagi, S. Moriai et al., “Lightweight cryptography for the internet
of things,” Sony Corporation, vol. 2008, pp. 7–10, 2008. [Online].
Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
227.8445&rep=rep1&type=pdf

[60] Z.-K. Zhang, M. C. Y. Cho, Z.-Y. Wu, and S. W. Shieh, “Identifying
and authenticating iot objects in a natural context,” Computer, vol. 48,
no. 08, pp. 81–83, 2015.

[61] A. R. Metke and R. L. Ekl, “Security technology for smart grid
networks,” IEEE Transactions on Smart Grid, vol. 1, no. 1, pp. 99–107,
June 2010.

[62] J. Xia and Y. Wang, “Secure key distribution for the smart grid,” IEEE
Transactions on Smart Grid, vol. 3, no. 3, pp. 1437–1443, Sep. 2012.

[63] V. Pillitteri and T. Brewer, “Guidelines for smart grid cybersecurity,”
Tech. Rep., 2014-09-25 2014.

[64] R. Dupont and A. Enge, “Provably secure non-interactive key
distribution based on pairings,” Discrete Applied Mathematics,
vol. 154, no. 2, pp. 270–276, 2006, coding and Cryptography.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0166218X05002337

[65] V. Seferian, R. Kanj, A. Chehab, and A. Kayssi, “Identity based key
distribution framework for link layer security of ami networks,” IEEE
Transactions on Smart Grid, vol. 9, no. 4, pp. 3166–3179, July 2018.

[66] A. Shostack, Threat modeling: Designing for security. John Wiley &
Sons, 2014.

[67] ISO/IEC JTC 1/SC 27, “Iso/iec 15408 information security,
cybersecurity and privacy protection — evaluation criteria for
it security,” 2022, iSO 15408:2022. [Online]. Available: https:
//www.iso.org/standard/72891.html

[68] K. Beckers, D. Hatebur, and M. Heisel, “A problem-based threat
analysis in compliance with common criteria,” in 2013 International
Conference on Availability, Reliability and Security, Sep. 2013, pp.
111–120.

[69] W. H. Wolf, Computers as components. Elsevier/Morgan Kaufmann,
2008.

[70] Recessim Wiki, “Landis+gyr residential meter,” 2020, Accessed: Apr.
16, 2023. [Online]. Available: https://wiki.recessim.com/view/Landis\
%2BGyr Residential Meter

[71] European Committee for Electrotechnical Standardization, “EN 13757-
2: Communication systems for meters - part 2: Physical and link layer,”
2018, accessed: Apr. 16, 2023. [Online]. Available: https://standards.
cen.eu/dyn/www/f?p=204:110:0::::FSP PROJECT,FSP ORG ID:
62141,6135&cs=185A0912EBD1A2C1B62A03A7E80332078

[72] C. Gu, Power On and Bootloader. Berkeley, CA: Apress, 2016, pp. 5–
25. [Online]. Available: https://doi.org/10.1007/978-1-4842-1919-5 2

[73] Security requirements for cryptographic modules, National Institute of
Standards and Technology Std., may 2001.

[74] K. Markantonakis et al., “Enhancing the conditional access module
security in light of smart card sharing attacks,” Presentation, Informa-
tion Security Group Smart Card Centre, Royal Holloway, University of
London, vol. 20, 2008.

[75] C. Johnson, M. Badger, D. Waltermire, J. Snyder, and C. Skorupka,
“Guide to cyber threat information sharing,” Oct. 2016.

[76] C. L. Smith and D. J. Brooks, “Chapter 3 - security risk management,”
in Security Science, C. L. Smith and D. J. Brooks, Eds. Boston:
Butterworth-Heinemann, 2013, pp. 51–80. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780123944368000035

[77] T. A. Johnson, Cybersecurity: Protecting critical infrastructures from
cyber attack and cyber warfare. CRC Press, 2015.

[78] S. P. Skorobogatov, “Semi-invasive attacks: a new approach to hardware
security analysis,” University of Cambridge, Computer Laboratory,
Tech. Rep., 2005.

[79] M. T. Rahman, Q. Shi, S. Tajik, H. Shen, D. L. Woodard, M. Tehra-
nipoor, and N. Asadizanjani, “Physical inspection & attacks: New fron-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 36

tier in hardware security,” in 2018 IEEE 3rd International Verification
and Security Workshop (IVSW). IEEE, jul 2018, pp. 93–102.

[80] M. G. Rekoff, “On reverse engineering,” IEEE Transactions on Sys-
tems, Man, and Cybernetics, vol. SMC-15, no. 2, pp. 244–252, 1985.

[81] R. Torrance and D. James, “The state-of-the-art in ic reverse engi-
neering,” in Cryptographic Hardware and Embedded Systems - CHES
2009, C. Clavier and K. Gaj, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 363–381.

[82] R. C. Gilberg, R. M. Knowles, P. Moroney, and W. A. Shumate, “Secure
integrated circuit chip with conductive shield,” Jun. 12 1990, uS Patent
4,933,898.

[83] S. H. Weingart, “Physical security devices for computer subsystems:
A survey of attacks and defenses,” in International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, 2000,
pp. 302–317.

[84] S. Manich, M. S. Wamser, and G. Sigl, “Detection of probing attempts
in secure ics,” in 2012 IEEE International Symposium on Hardware-
Oriented Security and Trust. IEEE, 2012, pp. 134–139.

[85] M. Nagata, “Exploring fault injection attack resilience of secure ic
chips,” in 2022 IEEE International Reliability Physics Symposium
(IRPS). IEEE, 2022, pp. 11C–1.

[86] S. Skorobogatov, “How microprobing can attack encrypted memory,” in
2017 Euromicro Conference on Digital System Design (DSD). IEEE,
2017, pp. 244–251.

[87] A. Mohammadi, M. Ebrahimi, A. Ejlali, and S. G. Miremadi, “Scfit:
A fpga-based fault injection technique for seu fault model,” in 2012
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2012, pp. 586–589.

[88] O. Kömmerling and M. G. Kuhn, “Design principles for tamper-
resistant smartcard processors.” Smartcard, vol. 99, pp. 9–20, 1999.

[89] C. O’Flynn, “Getting root on philips hue bridge 2.0,” 2016.
[90] N. Timmers, A. Spruyt, and M. Witteman, “Controlling pc on arm using

fault injection,” in 2016 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC). IEEE, 2016, pp. 25–35.

[91] M. Witteman and M. Oostdijk, “Secure application programming in
the presence of side channel attacks,” in RSA conference, 2008.

[92] S. Endo, Y. Li, N. Homma, K. Sakiyama, K. Ohta, and T. Aoki,
“An efficient countermeasure against fault sensitivity analysis using
configurable delay blocks,” in 2012 Workshop on Fault Diagnosis and
Tolerance in Cryptography. IEEE, 2012, pp. 95–102.

[93] M. Nagata, T. Miki, and N. Miura, “Physical attack protection tech-
niques for ic chip level hardware security,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 30, no. 1, pp. 5–14, 2021.

[94] L. Zussa, A. Dehbaoui, K. Tobich, J.-M. Dutertre, P. Maurine,
L. Guillaume-Sage, J. Clediere, and A. Tria, “Efficiency of a glitch
detector against electromagnetic fault injection,” in 2014 Design,
Automation & Test in Europe Conference & Exhibition (DATE), Mar.
2014, pp. 1–6, iSSN: 1558-1101.

[95] N. Miura, D. Fujimoto, D. Tanaka, Y.-i. Hayashi, N. Homma, T. Aoki,
and M. Nagata, “A local EM-analysis attack resistant cryptographic
engine with fully-digital oscillator-based tamper-access sensor,” in 2014
Symposium on VLSI Circuits Digest of Technical Papers, Jun. 2014, pp.
1–2, iSSN: 2158-5636.

[96] Y. Araga, M. Nagata, H. Ikeda, T. Miki, N. Miura, N. Watanabe,
H. Shimamoto, and K. Kikuchi, “A Thick Cu Layer Buried in Si
Interposer Backside for Global Power Routing,” IEEE Transactions on
Components, Packaging and Manufacturing Technology, vol. 9, no. 3,
pp. 502–510, Mar. 2019.

[97] S. Bhunia and M. Tehranipoor, “Chapter 8 - side-channel attacks,”
in Hardware Security, S. Bhunia and M. Tehranipoor, Eds.
Morgan Kaufmann, 2019, pp. 193–218. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780128124772000137

[98] D. Brumley and D. Boneh, “Remote timing attacks are practical,”
Computer Networks, vol. 48, no. 5, pp. 701–716, 2005.

[99] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater,
and J.-L. Willems, “A practical implementation of the timing attack,”
in International Conference on Smart Card Research and Advanced
Applications. Springer, 1998, pp. 167–182.

[100] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Annual international cryptology conference. Springer, 1999, pp.
388–397. [Online]. Available: https://link.springer.com/content/pdf/10.
1007/3-540-48405-1 25.pdf

[101] E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn, “Iot goes
nuclear: Creating a zigbee chain reaction,” in 2017 IEEE Symposium
on Security and Privacy (SP). IEEE, 2017, pp. 195–212.

[102] J. Krämer, D. Nedospasov, A. Schlösser, and J.-P. Seifert, “Differential
photonic emission analysis,” in Constructive Side-Channel Analysis
and Secure Design, E. Prouff, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 1–16.

[103] A. Schlösser, D. Nedospasov, J. Krämer, S. Orlic, and J.-P. Seifert,
“Simple photonic emission analysis of aes,” in International Workshop
on Cryptographic Hardware and Embedded Systems. Springer, 2012,
pp. 41–57.

[104] J. Krämer, “Why cryptography should not rely on physical attack
complexity,” it-Information Technology, vol. 59, no. 1, pp. 53–56, 2017.

[105] V. Rozic, B. Yang, W. Dehaene, and I. Verbauwhede, “Highly efficient
entropy extraction for true random number generators on fpgas,” in
2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC).
IEEE, 2015, pp. 1–6.

[106] C. S. Petrie and J. A. Connelly, “A noise-based ic random number
generator for applications in cryptography,” IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, vol. 47,
no. 5, pp. 615–621, 2000.

[107] J. Senden, “Biasing a ring-oscillator based true random number gen-
erator with an electro-magnetic fault injuction using harmonic waves,”
Master’s thesis, University of Twente, 2015.

[108] P. Bayon, L. Bossuet, A. Aubert, and V. Fischer, “Electromagnetic
analysis on ring oscillator-based true random number generators,” in
2013 IEEE International Symposium on Circuits and Systems (ISCAS),
2013, pp. 1954–1957.

[109] Y. Su, J. Wu, C. Long, and L. Wei, “Secure decentralized machine
identifiers for internet of things,” in Proceedings of the 2020 The 2nd
International Conference on Blockchain Technology, 2020, pp. 57–62.

[110] M. Barr, “Memory types,” Embedded Systems Programming, vol. 14,
no. 5, pp. 103–104, 2001.

[111] U. Gatti, “One-time programmable memories for harsh environments,”
Rad-hard Semiconductor Memories, p. 151, 2019.

[112] C. M. Maxfield, “Chapter 15 - memory ics,” in Bebop to the
Boolean Boogie (Third Edition), third edition ed., C. M. Maxfield,
Ed. Boston: Newnes, 2009, pp. 193–212. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9781856175074000152

[113] D. Kahng and S. M. Sze, “A floating gate and its application to memory
devices,” The Bell System Technical Journal, vol. 46, no. 6, pp. 1288–
1295, jul 1967.

[114] C. M. Maxfield, “Chapter 16 - programmable ics,” in Bebop to the
Boolean Boogie (Third Edition), third edition ed., C. M. Maxfield,
Ed. Boston: Newnes, 2009, pp. 213–234. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9781856175074000164

[115] R. F. Rizzolo, T. G. Foote, J. M. Crafts, D. A. Grosch, T. O. Leung, D. J.
Lund, B. L. Mechtly, B. J. Robbins, T. J. Slegel, M. J. Tremblay et al.,
“Ibm system z9 efuse applications and methodology,” IBM Journal of
Research and Development, vol. 51, no. 1.2, pp. 65–75, 2007.

[116] H. Divva, A. P. Chavan, and S. Krishnamurthy, “Design and verification
of ecc scheme to optimize area and tester time in otp rom controller,”
in 2019 4th International Conference on Recent Trends on Electronics,
Information, Communication & Technology (RTEICT), 2019, pp. 151–
155.

[117] J.-M. Schmidt, M. Hutter, and T. Plos, “Optical fault attacks on aes: A
threat in violet,” in 2009 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC). IEEE, 2009, pp. 13–22.

[118] ——, “Optical fault attacks on aes: A threat in violet,” in 2009
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC).
IEEE, 2009, pp. 13–22.

[119] M. Hutle and M. Kammerstetter, “Chapter 4 - Resilience Against
Physical Attacks,” in Smart Grid Security, F. Skopik and P. Smith, Eds.
Boston: Syngress, Jan. 2015, pp. 79–112. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780128021224000043

[120] S. Skorobogatov, “Physical attacks and tamper resistance,” in Introduc-
tion to Hardware Security and Trust. Springer, 2012, pp. 143–173.

[121] M. Tunstall, Smart Card Security. Cham: Springer International
Publishing, 2017, pp. 217–251. [Online]. Available: https://doi.org/10.
1007/978-3-319-50500-8 9

[122] J. Jung, J. Cho, and B. Lee, “A secure platform for iot devices based
on arm platform security architecture,” in 2020 14th International Con-
ference on Ubiquitous Information Management and Communication
(IMCOM), 2020, pp. 1–4.

[123] L. Bossuet, M. Grand, L. Gaspar, V. Fischer, and G. Gogniat, “Ar-
chitectures of flexible symmetric key crypto engines—a survey: From
hardware coprocessor to multi-crypto-processor system on chip,” ACM
Computing Surveys (CSUR), vol. 45, no. 4, pp. 1–32, 2013.

[124] S. Gueron, “Intel advanced encryption standard (aes) instructions set,”
Intel White Paper, Rev, vol. 3, pp. 1–94, 2010.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 37

[125] I. ARM, “Armv8-a architecture reference manual,”
URL: https://documentation-service. arm. com/stat-
ic/60e6f8573d73a34b640e0cee, 2015.

[126] L. Gaspar, V. Fischer, F. Bernard, L. Bossuet, and P. Cotret, “Hcrypt:
a novel concept of crypto-processor with secured key management,”
in 2010 International Conference on Reconfigurable Computing and
FPGAs. IEEE, 2010, pp. 280–285.

[127] S. A. Rotondo, Trusted Computing Group. Boston, MA: Springer
US, 2011, pp. 1331–1331. [Online]. Available: https://doi.org/10.1007/
978-1-4419-5906-5 498

[128] S. L. Kinney, Trusted Platform Module Basics: Using TPM in Embed-
ded Systems. USA: Newnes, 2006.

[129] T. C. Group, “Trusted platform module library part 1:
Architecture,” Trusted Computing Group, Tech. Rep. 01.59,
Nov. 2019. [Online]. Available: https://trustedcomputinggroup.org/
wp-content/uploads/TCG TPM2 r1p59 Part1 Architecture pub.pdf

[130] TPM 2.0 Mobile Common Profile, Trusted Computing
Group Technical Report 31, Dec. 2015. [Online]. Avail-
able: https://trustedcomputinggroup.org/wp-content/uploads/TPM 2.0
Mobile Common Profile v2r31 FINAL.pdf

[131] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and
F. Piessens, “Plundervolt: Software-based fault injection attacks against
intel sgx,” in 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 2020, pp. 1466–1482.

[132] S. Saab, P. Rohatgi, and C. Hampel, “Side-channel protections for
cryptographic instruction set extensions,” Cryptology ePrint Archive,
2016.

[133] Y. Lu, “Attacking hardware aes with dfa,” arXiv preprint
arXiv:1902.08693, 2019.

[134] T. C. Group, “Profile pc client specific trusted platform module tpm
family 2.0,” Trusted Computing Group, Tech. Rep. 1.3, Sep. 2021.

[135] FIPS 140-3 - Security requirements for cryptographic modules, Na-
tional Institute of Standards and Technology Std., apr 2019.

[136] B. Pearson, C. Zou, Y. Zhang, Z. Ling, and X. Fu, “Sic 2: Securing
microcontroller based iot devices with low-cost crypto coprocessors,” in
2020 IEEE 26th International Conference on Parallel and Distributed
Systems (ICPADS). IEEE, 2020, pp. 372–381.

[137] Z. Zieliski, J. Chudzikiewicz, and J. Furtak, An Approach to
Integrating Security and Fault Tolerance Mechanisms into the Military
IoT. Cham: Springer International Publishing, 2019, pp. 111–128.
[Online]. Available: https://doi.org/10.1007/978-3-030-02807-7 6

[138] R. Toegl, “Tagging the turtle: Local attestation for kiosk computing,”
in Advances in Information Security and Assurance, J. H. Park, H.-H.
Chen, M. Atiquzzaman, C. Lee, T.-h. Kim, and S.-S. Yeo, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 60–69.

[139] N. Kuntze, A. Fuchs, and C. Rudolph, “Reliable identities using off-the-
shelf hardware security in manets,” in 2009 International Conference
on Computational Science and Engineering, vol. 2. IEEE, 2009, pp.
781–786.

[140] G. Inc, “Introduction to secure elements,” May 2018, Accessed: Mar.
21, 2022. [Online]. Available: https://globalplatform.org/wp-content/
uploads/2018/05/Introduction-to-Secure-Element-15May2018.pdf

[141] A. Umar and K. Mayes, Trusted Execution Environment and Host
Card Emulation. Cham: Springer International Publishing, 2017.
[Online]. Available: https://doi.org/10.1007/978-3-319-50500-8 18

[142] NXP, “P5cx012/02x/40/73/80/144 family,” Jan. 2008.
[143] B. Lepojevic, B. Pavlovic, and A. Radulovic, “Implementing nfc

service security–se vs tee vs hce,” in SYMORG Conference, 2014.
[144] K. Mayes and T. Evans, Smart Cards and Security for Mobile Commu-

nications. Cham: Springer International Publishing, 2017, pp. 93–128.
[Online]. Available: https://doi.org/10.1007/978-3-319-50500-8 4

[145] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks: Revealing
the secrets of smart cards. Springer Science & Business Media, 2008,
vol. 31.

[146] K. E. Mayes and K. Markantonakis, Smart cards, tokens, security and
applications. Springer, 2008, vol. 1.

[147] V. Lomne, “Common criteria certification of a smartcard: a technical
overview,” in CHES, 2016.

[148] E. B. Sanjuan, I. A. Cardiel, J. A. Cerrada, and C. Cerrada, “Message
queuing telemetry transport (mqtt) security: a cryptographic smart card
approach,” IEEE Access, vol. 8, pp. 115 051–115 062, 2020.

[149] Y. Jeon and Y. Kang, “Implementation of a lorawan protocol processing
module on an embedded device using secure element,” in 2019 34th
International Technical Conference on Circuits/Systems, Computers
and Communications (ITC-CSCC), 2019, pp. 1–3.

[150] B. S. S. B.V., “Bosch ip video and data security guidebook,”
Bosch, techreport 2.0, Apr. 2021. [Online]. Available:
https://resources-boschsecurity-cdn.azureedge.net/public/documents/
Data Security Guideb Special enUS 9007221590612491.pdf

[151] C. Lesjak, T. Ruprechter, J. Haid, H. Bock, and E. Brenner, “A secure
hardware module and system concept for local and remote industrial
embedded system identification,” in Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation (ETFA), 2014, pp. 1–7.

[152] C. Lesjak, T. Ruprechter, H. Bock, J. Haid, and E. Brenner, “Estado
— enabling smart services for industrial equipment through a secured,
transparent and ad-hoc data transmission online,” in The 9th Interna-
tional Conference for Internet Technology and Secured Transactions
(ICITST-2014), 2014, pp. 171–177.

[153] R. N. Akram, P.-F. Bonnefoi, S. Chaumette, K. Markantonakis, and
D. Sauveron, “Improving security of autonomous uavs fleets by using
new specific embedded secure elements-a position paper,” in 2nd
AETOS international conference on “Research challenges for future
RPAS/UAV systems”, Bordeaux, France, 2014.

[154] I. GlobalPlatform, “Tee system architecture,” GlobalPlat-
form Technology, techreport GPD SPE 009, 2018. [On-
line]. Available: https://globalplatform.org/wp-content/uploads/2018/
09/GPD TEE SystemArch v1.1.0.10-for-v1.2 PublicReview.pdf

[155] A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and J. M.
McCune, “Trustworthy execution on mobile devices: What security
properties can my mobile platform give me?” in International
conference on trust and trustworthy computing. Springer, 2012,
pp. 159–178. [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.220.220&rep=rep1&type=pdf

[156] I. GlobalPlatform, “Trusted user interface api,” Glob-
alPlatform, techreport GPD SPE 020, Jun. 2013. [On-
line]. Available: {https://globalplatform.org/wp-content/uploads/2013/
06/GlobalPlatform Trusted User Interface API v1.0.pdf}

[157] T. Alves, “Trustzone: Integrated hardware and software security,” White
paper, 2004.

[158] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptol.
ePrint Arch., vol. 2016, no. 86, pp. 1–118, 2016. [Online]. Available:
http://css.csail.mit.edu/6.858/2020/readings/costan-sgx.pdf

[159] A. Rao, “Rising to the challenge - data security with intel
confidential computing,” Intel, Feb. 2022. [Online]. Available:
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/
Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/
1353141

[160] M. McReynolds, “Azure announces next generation intel sgx
confidential computing vms,” Nov. 2021. [Online]. Available:
https://techcommunity.microsoft.com/t5/azure-confidential-computing/
azure-announces-next-generation-intel-sgx-confidential-computing/
ba-p/2839934

[161] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive
survey,” ACM Computing Surveys (CSUR), vol. 51, no. 6, pp. 1–36,
2019.

[162] H. Yang and M. Lee, “Demystifying arm trustzone tee client api using
op-tee,” in The 9th International Conference on Smart Media and
Applications, 2020, pp. 325–328.

[163] T. Firmware, “Open portable trusted execution environment,” 2013.
[Online]. Available: https://www.op-tee.org/

[164] B. McGillion, T. Dettenborn, T. Nyman, and N. Asokan, “Open-
TEE – an open virtual trusted execution environment,” in 2015 IEEE
Trustcom/BigDataSE/ISPA. IEEE, aug 2015.

[165] N. Zhang, H. Sun, K. Sun, W. Lou, and Y. T. Hou, “Cachekit:
Evading memory introspection using cache incoherence,” in 2016 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE,
2016, pp. 337–352.

[166] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,
“{ARMageddon}: Cache attacks on mobile devices,” in 25th USENIX
Security Symposium (USENIX Security 16), 2016, pp. 549–564.

[167] R. Guanciale, H. Nemati, C. Baumann, and M. Dam, “Cache storage
channels: Alias-driven attacks and verified countermeasures,” in 2016
IEEE Symposium on Security and Privacy (SP). IEEE, 2016, pp.
38–55.

[168] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “Truspy:
Cache side-channel information leakage from the secure world on arm
devices,” Cryptology ePrint Archive, 2016.

[169] A. Machiry, E. Gustafson, C. Spensky, C. Salls, N. Stephens, R. Wang,
A. Bianchi, Y. R. Choe, C. Kruegel, and G. Vigna, “Boomerang:
Exploiting the semantic gap in trusted execution environments.” in
NDSS, 2017.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 38

[170] Z. István, P. Rosero, and P. Bonnet, “Always-trusted iot—making iot
devices trusted with minimal overhead,” in Proceedings of the 5th
Workshop on System Software for Trusted Execution, ser. SysTEX ’22.
New York, NY, USA: Association for Computing Machinery, 2022,
p. 2.

[171] Intel, “linux-sgx,” Github, 2015, Accessed: Apr. 21, 2022. [Online].
Available: https://github.com/intel/linux-sgx

[172] A. Nilsson, P. N. Bideh, and J. Brorsson, “A survey of published attacks
on intel sgx,” arXiv preprint arXiv:2006.13598, 2020.

[173] A. Brandão, J. S. Resende, and R. Martins, “Hardening cryptographic
operations through the use of secure enclaves,” Computers & Security,
vol. 108, p. 102327, 2021.

[174] M. Schwarz, S. Weiser, and D. Gruss, “Practical enclave malware with
intel sgx,” in Detection of Intrusions and Malware, and Vulnerability
Assessment: 16th International Conference, DIMVA 2019, Gothenburg,
Sweden, June 19–20, 2019, Proceedings 16. Springer, 2019, pp. 177–
196.

[175] V. Shanbhogue, J. W. Brandt, and J. Wiedemeier, “Protecting informa-
tion processing system secrets from debug attacks,” Feb. 10 2015, uS
Patent 8,955,144.

[176] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado,
“Inferring fine-grained control flow inside {SGX} enclaves with branch
shadowing,” in 26th USENIX Security Symposium (USENIX Security
17), 2017, pp. 557–574.

[177] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in 40th
IEEE Symposium on Security and Privacy (S&P’19), 2019.

[178] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018.

[179] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre:
Stealing intel secrets from sgx enclaves via speculative execution,” in
2019 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2019, pp. 142–157.

[180] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the keys to the intel {SGX} kingdom with
transient {Out-of-Order} execution,” in 27th USENIX Security Sympo-
sium (USENIX Security 18), 2018, pp. 991–1008.

[181] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and
Y. Yarom, “Fallout: Leaking data on meltdown-resistant cpus,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 769–784. [Online].
Available: https://doi.org/10.1145/3319535.3363219

[182] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “Ridl: Rogue in-flight data load,”
in 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019,
pp. 88–105.

[183] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “Zombieload: Cross-privilege-boundary data
sampling,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 753–768.

[184] H. Vill, “Sgx attestation process,” 2017. [Online]. Avail-
able: https://courses.cs.ut.ee/MTAT.07.022/2017 spring/uploads/Main/
hiie-report-s16--17.pdf

[185] J. Van Bulck, D. Oswald, E. Marin, A. Aldoseri, F. D. Garcia, and
F. Piessens, “A tale of two worlds: Assessing the vulnerability of
enclave shielding runtimes,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp.
1741–1758.

[186] NIST, “National vulnerability database,” 2022, Accessed: Apr. 29,
2022. [Online]. Available: https://nvd.nist.gov/vuln/search/results?
form type=Basic&results type=overview&query=TrustZone&search
type=all&isCpeNameSearch=false

[187] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “SoK: Understanding
the prevailing security vulnerabilities in TrustZone-assisted TEE sys-
tems,” in 2020 IEEE Symposium on Security and Privacy (SP). IEEE,
may 2020.

[188] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun,
and A.-R. Sadeghi, “Software grand exposure:{SGX} cache attacks
are practical,” in 11th USENIX Workshop on Offensive Technologies
(WOOT 17), 2017.

[189] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How sgx
amplifies the power of cache attacks,” in International Conference on
Cryptographic Hardware and Embedded Systems. Springer, 2017, pp.
69–90.

[190] S. K. Bukasa, R. Lashermes, H. L. Bouder, J.-L. Lanet, and A. Legay,
“How trustzone could be bypassed: Side-channel attacks on a modern
system-on-chip,” in IFIP International Conference on Information
Security Theory and Practice. Springer, 2017, pp. 93–109.

[191] Z. Chen, G. Vasilakis, K. Murdock, E. Dean, D. Oswald, and F. D.
Garcia, “{VoltPillager}: Hardware-based fault injection attacks against
intel {SGX} enclaves using the {SVID} voltage scaling interface,” in
30th USENIX Security Symposium (USENIX Security 21), 2021, pp.
699–716.

[192] S. Gueron, “A memory encryption engine suitable for general purpose
processors,” Cryptology ePrint Archive, 2016.

[193] C. Lesjak, D. Hein, and J. Winter, “Hardware-security technologies for
industrial iot: Trustzone and security controller,” in IECON 2015-41st
Annual Conference of the IEEE Industrial Electronics Society. IEEE,
2015, pp. 002 589–002 595.

[194] Z. Ling, H. Yan, X. Shao, J. Luo, Y. Xu, B. Pearson, and X. Fu, “Secure
boot, trusted boot and remote attestation for arm trustzone-based iot
nodes,” Journal of Systems Architecture, vol. 119, p. 102240, 2021.

[195] J. Wang, Z. Hong, Y. Zhang, and Y. Jin, “Enabling security-enhanced
attestation with intel sgx for remote terminal and iot,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 37, no. 1, pp. 88–96, 2018.

[196] A. Durand, P. Gremaud, J. Pasquier, and U. Gerber, “Trusted
lightweight communication for iot systems using hardware security,”
in Proceedings of the 9th International Conference on the Internet of
Things, 2019, pp. 1–4.

[197] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way
functions,” Science, vol. 297, no. 5589, pp. 2026–2030, 2002.

[198] P. Tuyls, B. Škorić, S. Stallinga, A. H. Akkermans, and W. Ophey,
“Information-theoretic security analysis of physical uncloneable func-
tions,” in International Conference on Financial Cryptography and
Data Security. Springer, 2005, pp. 141–155.

[199] B. Škorić, P. Tuyls, and W. Ophey, “Robust key extraction from phys-
ical uncloneable functions,” in International Conference on Applied
Cryptography and Network Security. Springer, 2005, pp. 407–422.

[200] G. A. Fink, D. V. Zarzhitsky, T. E. Carroll, and E. D. Farquhar,
“Security and privacy grand challenges for the internet of things,”
in 2015 International Conference on Collaboration Technologies and
Systems (CTS). IEEE, 2015, pp. 27–34.

[201] Y. Atwady and M. Hammoudeh, “A survey on authentication
techniques for the internet of things,” in Proceedings of the
International Conference on Future Networks and Distributed
Systems, ser. ICFNDS ’17. New York, NY, USA: Association for
Computing Machinery, 2017. [Online]. Available: https://doi.org/10.
1145/3102304.3102312

[202] M. Mamdouh, A. I. Awad, A. A. Khalaf, and H. F.
Hamed, “Authentication and identity management of ioht devices:
Achievements, challenges, and future directions,” Computers
& Security, vol. 111, p. 102491, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404821003151

[203] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical
unclonable functions and applications: A tutorial,” Proceedings of the
IEEE, vol. 102, no. 8, pp. 1126–1141, 2014.

[204] H. Kang, Y. Hori, T. Katashita, M. Hagiwara, and K. Iwamura,
“Cryptographie key generation from puf data using efficient fuzzy ex-
tractors,” in 16th International conference on advanced communication
technology. IEEE, 2014, pp. 23–26.

[205] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “Fpga intrinsic
pufs and their use for ip protection,” in International workshop on
cryptographic hardware and embedded systems. Springer, 2007, pp.
63–80.

[206] U. Rührmair, H. Busch, and S. Katzenbeisser, “Strong pufs: models,
constructions, and security proofs,” in Towards hardware-intrinsic
security. Springer, 2010, pp. 79–96.

[207] U. Rührmair and D. E. Holcomb, “Pufs at a glance,” in 2014 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2014, pp. 1–6.

[208] D. Nedospasov, J.-P. Seifert, C. Helfmeier, and C. Boit, “Invasive puf
analysis,” in 2013 Workshop on Fault Diagnosis and Tolerance in
Cryptography. IEEE, 2013, pp. 30–38.

[209] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmid-
huber, “Modeling attacks on physical unclonable functions,” in Pro-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 39

ceedings of the 17th ACM conference on Computer and communica-
tions security, 2010, pp. 237–249.

[210] G. T. Becker, “On the pitfalls of using arbiter-pufs as building blocks,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 34, no. 8, pp. 1295–1307, 2015.

[211] N. Wisiol, C. Mühl, N. Pirnay, P. H. Nguyen, M. Margraf, J.-P.
Seifert, M. van Dijk, and U. Rührmair, “Splitting the interpose puf: A
novel modeling attack strategy,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 97–120, 2020.

[212] A. Vijayakumar and S. Kundu, “A novel modeling attack resistant puf
design based on non-linear voltage transfer characteristics,” in 2015
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2015, pp. 653–658.

[213] A. Mahmoud, U. Rührmair, M. Majzoobi, and F. Koushanfar, “Com-
bined modeling and side channel attacks on strong pufs.” IACR Cryptol.
ePrint Arch., vol. 2013, p. 632, 2013.

[214] A. Vijayakumar, V. C. Patil, C. B. Prado, and S. Kundu, “Machine
learning resistant strong puf: Possible or a pipe dream?” in 2016
IEEE international symposium on hardware oriented security and trust
(HOST). IEEE, 2016, pp. 19–24.

[215] J. Delvaux, R. Peeters, D. Gu, and I. Verbauwhede, “A survey on
lightweight entity authentication with strong PUFs,” ACM Computing
Surveys, vol. 48, no. 2, pp. 1–42, nov 2015.

[216] A. Mahmoud, U. Rührmair, M. Majzoobi, and F. Koushanfar, “Com-
bined modeling and side channel attacks on strong pufs,” Cryptology
ePrint Archive, 2013.

[217] S. Tajik, E. Dietz, S. Frohmann, H. Dittrich, D. Nedospasov,
C. Helfmeier, J.-P. Seifert, C. Boit, and H.-W. Hübers, “Photonic
side-channel analysis of arbiter pufs,” Journal of Cryptology,
vol. 30, no. 2, pp. 550–571, Apr 2017. [Online]. Available:
https://doi.org/10.1007/s00145-016-9228-6

[218] D. Merli, D. Schuster, F. Stumpf, and G. Sigl, “Semi-invasive em
attack on fpga ro pufs and countermeasures,” in Proceedings of the
Workshop on Embedded Systems Security, ser. WESS ’11. New York,
NY, USA: Association for Computing Machinery, 2011. [Online].
Available: https://doi.org/10.1145/2072274.2072276

[219] A. R. Korenda, F. Afghah, B. Cambou, and C. Philabaum, “A proof
of concept SRAM-based physically unclonable function (PUF) key
generation mechanism for IoT devices,” in 2019 16th Annual IEEE
International Conference on Sensing, Communication, and Networking
(SECON). IEEE, jun 2019.

[220] C. Böhm, M. Hofer, and W. Pribyl, “A microcontroller sram-puf,” in
2011 5th International Conference on Network and System Security.
IEEE, 2011, pp. 269–273.

[221] D. Nedospasov, J.-P. Seifert, C. Helfmeier, and C. Boit, “Invasive puf
analysis,” in 2013 Workshop on Fault Diagnosis and Tolerance in
Cryptography. IEEE, 2013, pp. 30–38.

[222] D. Mukhopadhyay, “Pufs as promising tools for security in internet of
things,” IEEE Design & Test, vol. 33, no. 3, pp. 103–115, 2016.

[223] M. A. Qureshi and A. Munir, “PUF-IPA: A PUF-based identity
preserving protocol for internet of things authentication,” in 2020 IEEE
17th Annual Consumer Communications & Networking Conference
(CCNC), IEEE. IEEE, jan 2020, pp. 1–7.

[224] K. B. Frikken, M. Blanton, and M. J. Atallah, “Robust authentication
using physically unclonable functions,” in Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2009, pp. 262–277.

[225] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical
random functions,” in Proceedings of the 9th ACM conference on
Computer and communications security - CCS '02. ACM Press, 2002.

[226] D. Lim, J. Lee, B. Gassend, G. Suh, M. van Dijk, and S. Devadas,
“Extracting secret keys from integrated circuits,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 13, no. 10, pp.
1200–1205, oct 2005.

[227] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmid-
huber, “Modeling attacks on physical unclonable functions,” in Pro-
ceedings of the 17th ACM conference on Computer and communica-
tions security. ACM Press, 2010, pp. 237–249.

[228] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Controlled phys-
ical random functions,” in 18th Annual Computer Security Applications
Conference, 2002. Proceedings. IEEE Comput. Soc, 2002.

[229] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure
PUFs,” in 2008 IEEE/ACM International Conference on Computer-
Aided Design. IEEE, nov 2008.

[230] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and S. De-
vadas, “Slender PUF protocol: A lightweight, robust, and secure
authentication by substring matching,” in 2012 IEEE Symposium on
Security and Privacy Workshops. IEEE, may 2012.

[231] J. Delvaux and I. Verbauwhede, “Fault injection modeling attacks on
65 nm arbiter and RO sum PUFs via environmental changes,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 6,
pp. 1701–1713, jun 2014.

[232] Ü. Kocabaş, A. Peter, S. Katzenbeisser, and A.-R. Sadeghi, “Con-
verse puf-based authentication,” in Trust and Trustworthy Computing,
S. Katzenbeisser, E. Weippl, L. J. Camp, M. Volkamer, M. Reiter, and
X. Zhang, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 142–158.

[233] M.-D. Yu, M. Hiller, J. Delvaux, R. Sowell, S. Devadas, and I. Ver-
bauwhede, “A lockdown technique to prevent machine learning on
PUFs for lightweight authentication,” IEEE Transactions on Multi-
Scale Computing Systems, vol. 2, no. 3, pp. 146–159, jul 2016.

[234] Y. Gao, H. Ma, S. F. Al-Sarawi, D. Abbott, and D. C. Ranas-
inghe, “PUF-FSM: A controlled strong PUF,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pp. 1–1,
2017.

[235] A. Braeken, “Puf based authentication protocol for iot,” Symmetry,
vol. 10, no. 8, p. 352, 2018.

[236] U. Chatterjee, V. Govindan, R. Sadhukhan, D. Mukhopadhyay, R. S.
Chakraborty, D. Mahata, and M. M. Prabhu, “Building PUF based
authentication and key exchange protocol for IoT without explicit CRPs
in verifier database,” IEEE Transactions on Dependable and Secure
Computing, vol. 16, no. 3, pp. 424–437, may 2019.

[237] M. Ebrahimabadi, M. Younis, and N. Karimi, “A PUF-based modeling-
attack resilient authentication protocol for IoT devices,” IEEE Internet
of Things Journal, pp. 1–1, 2021.

[238] Z. Huang and Q. Wang, “A puf-based unified identity verification
framework for secure iot hardware via device authentication,” World
Wide Web, vol. 23, no. 2, pp. 1057–1088, 2020.

[239] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Helper data
algorithms for PUF-based key generation: Overview and analysis,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 34, no. 6, pp. 889–902, jun 2015.

[240] A. Shamsoshoara, A. Korenda, F. Afghah, and S. Zeadally, “A survey
on hardware-based security mechanisms for internet of things,” ArXiv.
org, 2019.

[241] B. Škorić, P. Tuyls, and W. Ophey, Robust Key Extraction from
Physical Uncloneable Functions. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 407–422.

[242] K. Kursawe, A.-R. Sadeghi, D. Schellekens, B. Skoric, and P. Tuyls,
“Reconfigurable physical unclonable functions - enabling technology
for tamper-resistant storage,” in 2009 IEEE International Workshop on
Hardware-Oriented Security and Trust. IEEE, 2009.

[243] G. Suh, C. O'Donnell, I. Sachdev, and S. Devadas, “Design and imple-
mentation of the AEGIS single-chip secure processor using physical
random functions,” in 32nd International Symposium on Computer
Architecture (ISCA'05). IEEE, 2005.

[244] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in 2007 44th ACM/IEEE
Design Automation Conference, 2007, pp. 9–14. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/4261134

[245] I. Eichhorn, P. Koeberl, and V. van der Leest, “Logically reconfigurable
PUFs,” in Proceedings of the sixth ACM workshop on Scalable trusted
computing - STC '11. ACM Press, 2011.

[246] L. Zhang, Z. H. Kong, and C.-H. Chang, “PCKGen: A phase change
memory based cryptographic key generator,” in 2013 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS2013). IEEE, may
2013.

[247] J. Zhang and G. Qu, “Physical unclonable function-based key sharing
via machine learning for IoT security,” IEEE Transactions on Industrial
Electronics, vol. 67, no. 8, pp. 7025–7033, aug 2020.

[248] IEEE, “Ieee standard for low-rate wireless networks,” IEEE Std
802.15.4-2020 (Revision of IEEE Std 802.15.4-2015), pp. 1–800, 2020.

[249] D. Geelen, G. van Kempen, F. van Hoogstraten, and A. Liotta, “A
wireless mesh communication protocol for smart-metering,” in 2012
International Conference on Computing, Networking and Communica-
tions (ICNC), Jan 2012, pp. 343–349.

[250] Espressif Systems, “Esp32-c3 datasheet,” March 2021, Accessed: Mar.
6, 2023. [Online]. Available: https://www.espressif.com/sites/default/
files/documentation/esp32-c3 datasheet en.pdf

[251] ——, “ESP32-H2,” 2021, Accessed: Apr. 11, 2023. [Online].
Available: https://www.espressif.com/en/products/socs/esp32-h2

[252] ——, “Esp32-c3 datasheet,” March 2021, Accessed: Mar. 6,
2023. [Online]. Available: https://www.espressif.com/sites/default/
files/documentation/esp32-c3 technical reference manual en.pdf

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 40

[253] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song,
“Keystone: An open framework for architecting trusted execution
environments,” in Proceedings of the Fifteenth European Conference
on Computer Systems, 2020, pp. 1–16.

[254] Ai-Thinker, “Esp-c3-13 specification,” June 2021, Accessed: Mar. 6,
2023. [Online]. Available: https://docs.ai-thinker.com/ media/esp32/
docs/esp-c3-13 specification.pdf

[255] Espressif Systems. (2016) ESP-IDF Startup API Guide. Accessed:
Mar. 6, 2023. [Online]. Available: https://docs.espressif.com/projects/
esp-idf/en/latest/esp32c3/api-guides/startup.html

[256] S. Lyubka, “mdk,” 2022, Accessed: Mar. 6, 2023. [Online]. Available:
https://github.com/cpq/mdk

[257] Texas Instruments, “Spst cmos analog switches,” Datasheet, 2006,
Accessed: Mar. 21, 2023. [Online]. Available: https://www.ti.com/lit/
ds/symlink/ts12a4514.pdf

[258] NewAE Technology Inc., “ChipWhisperer-Nano,” Product page, 2022,
Accessed: Mar. 21, 2023. [Online]. Available: https://rtfm.newae.com/
Capture/ChipWhisperer-Nano/

[259] Riscure, “CVE-2019-17391,” 2019, Accessed: Apr. 28, 2023.
[Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2019-17391

[260] Saleae Inc., “Saleae logic 8 logic analyzer,” 2023, Accessed:
Mar. 21, 2023. [Online]. Available: https://eur.saleae.com/products/
saleae-logic-8

[261] Future Technology Devices International Limited, “FTDI FT232H
datasheet,” Nov. 2019, Accessed: Mar. 21, 2023. [Online].
Available: https://www.ftdichip.com/Support/Documents/DataSheets/
ICs/DS FT232H.pdf

[262] Espressif Systems, “Security advisory,” Espressif Systems, Security
Advisory AR2022-003, May 2022, Accessed: Apr. 26, 2023. [Online].
Available: https://bit.ly/3QbXaIV

[263] F.-X. Standaert, E. Peeters, and J.-J. Quisquater, “On the masking
countermeasure and higher-order power analysis attacks,” in Interna-
tional Conference on Information Technology: Coding and Computing
(ITCC’05)-Volume II, vol. 1. IEEE, 2005, pp. 562–567.

[264] XGecu, “XGecu TL866II plus,” Accessed: Apr. 11, 2023. [Online].
Available: http://www.autoelectric.cn/en/TL866 main.html

[265] Andromeda Research Labs, “Understanding in-circuit eeprom and
microcontroller reading and programming,” Accessed: Apr. 11, 2023.
[Online]. Available: https://www.arlabs.com/incircuit.html

[266] National Security Agency, “Ghidra,” 2019, Accessed: Apr. 11, 2023.
[Online]. Available: https://ghidra-sre.org/

[267] Espressif Systems, “Esp32-arduino sketch and encryption with
esp-idf,” 2021, Accessed: Apr. 11, 2023. [Online]. Available:
https://github.com/espressif/arduino-esp32/issues/5645

[268] S. Yoo and A. A. Jerraya, “Introduction to hardware abstraction layers
for soc,” Embedded software for SoC, pp. 179–186, 2003.

[269] L. Lathrop, S. Liebl, U. Raithel, M. Söllner, and A. Aßmuth, “Securing
the internet of things from the bottom up using physical unclonable
functions,” CLOUD COMPUTING 2020, p. 44, 2020.

[270] Linaro, “Trusted firmware,” 2013, Accessed: June 30, 2023. [Online].
Available: https://www.trustedfirmware.org/

[271] J. King, “HKG18-212 - Trusted Firmware M: Introduction,”
Linaro Connect - Hong Kong, Mar. 2018, Accessed: June
30, 2023. [Online]. Available: https://resources.linaro.org/en/resource/
L7dqBYxKyyTPWk2vWHtbMj

[272] Linaro, “MCUBOOT,” 2017, Accessed: June 30, 2023. [Online].
Available: https://github.com/mcu-tools/mcuboot

