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Hardening of cryptographic operations through the use of Secure Enclaves

André Brandãoa, João Resendea, Rolando Martinsa

aCRACS/INESC-TEC, C3P & Faculty of Sciences, University of Porto, Portugal

Abstract

With the rising popularity of the cloud, companies lose control of both the hardware and the operating
system responsible for hosting their software and data. This means that companies are at risk of losing
confidential data when these are utilized in components controlled by a third-party cloud vendor. Secure
enclaves can help solve this problem by creating a secure environment where code can be executed securely,
guaranteeing that no unwanted parties read or modify the data inside this secure environment.

While the use of secure enclaves has been focused on small footprints software, such as the implementation
of trusted computing base for distributed protocols, we analyze the strengths and shortcoming of current
tools in an effort to further expand the applicability of their use. Given the importance of web servers and
their inherent greater exposure to attacks, we explore the hardening of Apache web server through the use of
secure enclaves. This was accomplished by making the necessary modifications to further protect its private
key from both the operating system and hypervisor. We also provide a performance assessment to quantify
the overhead associated with the use of secure enclaves, namely, Intel SGX.

Keywords: Security, Key Management, Trust, Trusted execution environment, Intel SGX

1. Introduction

Most applications assume that the environment
they are running is trustworthy and thus does not
employ any defense mechanisms to secure sensitive
data (e.g., cleartext storage of private keys and pass-
words). This is because unprivileged software alone
cannot defend its memory contents from a more priv-
ileged code, i.e., the kernel without extra protection
primitives provided by the hardware.

At first glance, it might not be obvious to consider
the operating system or even the hypervisor in the
threat model on devices that we control. However, a
malicious hypervisor can modify and read any phys-
ical memory present in the machine, whereas a mali-

Email addresses: andre.brandao@fc.up.pt (André
Brandão), jresende@fc.up.pt (João Resende),
rmartins@fc.up.pt (Rolando Martins)

cious kernel can do the same to any memory allocated
to user processes.

The issue above can be partially solved with ho-
momorphic encryption, a cryptography field that al-
lows a computer to perform operations on the en-
crypted data as if it were performing on the original
data. This means that the decrypted result after the
operation must be equal to the computed value if
performed on the original data. Unfortunately, not
many implementations exist that apply homomorphic
encryption are symmetric, and those that are, most
were broken [1]. Most applications are asymmetric,
which suffer from the performance penalty relative to
their symmetric counterpart [1].

A more feasible alternative solution can be
achieved through the use of secure hardware compo-
nents. Some examples include secure elements (SEs),
Trusted Platform Modules (TPMs), Java Cards, Intel
Trusted Execution Technology (TXT), Trusted Exe-
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cution Environments (TEE) and Secure Encrypted
Virtualization (SEV). Some with more limitations
than others, but all generally provide a way to secure
computation. The major limitation of these tech-
nologies is that they require dedicated hardware in
the host machine.

The recent advancement in the trusted execution
environment (TEE) technology (e.g., Arm Trust-
Zone, Intel SGX and AMD SEV) has allowed to-
day’s common off-the-shelf (COTS) CPUs to create
such programmable environments on enterprise and
consumer-grade devices. This easily enables anyone
to work on such environments and quickly deploy it in
the real world, thus allowing applications to consider
a ”wider” threat model, as it is, in theory, protected
against privileged code, i.e., running below security
ring 3.

1.1. Motivation

Today’s general-purpose computing devices run all
sorts of software, each one of them with their poten-
tial set of vulnerabilities. This means that compro-
mising one of them may lead to access to the device,
potentially compromising the remaining software.

Intel SGX gives the developers stronger guarantees
that the code executed was not tampered with while
providing confidentially of the data and code inside
it. At the same time, it provides the opportunity
to securely save sensitive data on external devices
through a per-device and per-application encryption
key. This also means that even though with the in-
creasing popularity of the cloud and many companies
moving their infrastructure to uncontrolled hardware,
they can securely utilize it, without the fear of leaking
sensitive data to unknown third parties.

Given that porting an application to a new environ-
ment is usually hard, not much work has been done to
attempt running day-to-day server software on Intel
SGX. Focus has mainly been on tools that separate
code automatically [2] or running unmodified appli-
cations inside an enclave [3, 4, 5, 6]. The main issue
associated with these approaches is that they do not
consider each application’s specificity leading to in-
compatibilities or/and significant performance loss.

In this work we aim to mimic an hardware secu-
rity module through an Intel SGX enclave, giving it

similar guarantees as an Hardware Security Modules
without the inconvenience of requiring the deploy-
ment of additional hardware on the host.

1.2. Contributions

The main goal of this work is to study the feasi-
bility of using secure enclaves in real-world scenarios
to provide integrity and confidentiality of both data
and computation. In summary, the contributions of
this work include:

• Identify existing server applications used in the
real world and solutions that can leverage Intel
SGX;

• Applicability of Intel SGX in applications used
in the real world;

• Open source implementation of prototypes and
corresponding deployment utilizing Intel SGX;

• Definition of a threat model with security anal-
ysis for each scenario;

1.3. Outline

We start by presenting the motivation for this work
and the contributions achieved in this work. This is
followed by Section 2, where we introduce some con-
cepts necessary throughout this work. It gives a brief
overview of how modern processors protect higher
privilege codes and the multiple ways to achieve vir-
tualization in the modern world. This Section also
explained what a trusted execution environment is
and how it can break the typical security ring in mod-
ern processors.

In Section 3, we present related work that aims to
run applications in Intel SGX, summarize the contri-
butions of other similar work and discuss limitations
of existing approaches.

Section 4 presents our work on Apache’s web
server, the creation of an OpenSSL Engine, both ap-
plied to Intel SGX. Additionally, with each imple-
mentation, we perform a security analysis.

In Section 5, we define the test methodology to
evaluate our implementations and present the results
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so that we can compare them to their original coun-
terpart and, when applicable, to other existing solu-
tions.

Lastly, Section 7, concludes this work by over-
viewing the results obtained in the previous Section.
Besides, we discuss a set of limitations of the current
implementations and possible future iterations of this
work.

2. Background

In this Section, we address some necessary concepts
before tackling the problem. We start by describing
the concept of security rings in modern processors,
followed by an explanation of current virtualization
techniques. For last, we introduce some basic con-
cepts of Intel SGX that will be necessary throughout
this work presentation.

2.1. Security Rings

Modern processors typically have several execution
modes that provide hierarchical layers of privilege,
known as the security rings [7]. The lower the ring in
which the CPU mode operates, the higher the privi-
lege is. Even though x86 gives various security rings
to work with, general-purpose operating systems such
as Linux and Windows only leverage two CPU modes,
running code in kernel mode, ring 0, and user mode
(ring 3).

With the evolution of the architecture and the in-
troduction of hypervisors, deeper levels of privilege
were introduced. One example of this is the hypervi-
sor mode, also known as ring -1, capable of preempt-
ing and isolating kernel code. Ring -2 refers to the
system management mode (SMM), which can seize
the hypervisor code and has nearly unrestricted ac-
cess to the system [8]. It is also in charge of con-
trolling power management, system hardware and
run proprietary code from Intel and the motherboard
manufacturer.

Trusted execution environments may break the hi-
erarchical layers of privilege by only allowing software
to run in a less privileged code and denying access to
higher privileged code.

2.2. Trusted Execution Environment
Trusted Execution Environment (TEE) is often

referred to as a secure, integrity-protected pro-
grammable environment with memory and some-
times storage capabilities [9].

Global Platform defines a ”TEE system architec-
ture” [10] which systems must comply in order to be
considered a Trusted Execution Environment. At a
very high level, the requirements for these are:

• Protect assets from environments other than the
TEE itself.

• Protection against some physical attacks

• System components (e.g., Debug interfaces) ca-
pable of assessing TEE assets are disabled or
controlled by an element protected by the TEE.

• The TEE must be instantiated through a ”Se-
cure boot” process by the SoC or an Off-SoC
Security processor

• Provide trusted storage of data and keys

• Software running outside the TEE should not be
able to call internal TEE APIs directly

We can see how a TEE may break the hierarchy
of security rings from the first and last requirements.
Any code other than the one in the TEE itself should
not be able to access the TEE contents. This includes
code running in higher privilege modes, e.g., kernel
code.

2.2.1. Intel SGX

In 2015, Intel introduced, along with the Sky-
lake microarchitecture, Software Guard Extension
(SGX), a set of security instructions that aims to
provide users with a hardware implementation of a
Trusted Execution Environments(TEE), allowing in-
tegrity and confidentiality guarantees to computation
performed on a device even if all privileged code is
compromised.

The creation of a trusted execution environment
in Intel SGX is achieved by allocating processor re-
served memory (PRM), which the processor protects
from all non-enclave memory accesses, including from
kernel, hypervisor and system management mode
code [11].
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Memory Structure

The PRM holds Enclave Page Cache (EPC) sets,
each with 4KB of size, which are assigned to the en-
claves by untrusted software. The CPU makes sure
that each EPC belongs exclusively to one enclave by
maintaining an Enclave Page cache Metadata.

As the processor reserved memory for Intel SGX
is limited to a maximum of 128MB [12], Intel SGX
provides instructions for the Operating System to
evict EPC pages to untrusted memory and later load
them back. As the memory where the evicted EPC
pages are stored is readable by the operating system,
SGX uses cryptography operations to ensure the in-
tegrity, confidentiality, and freshness of the evicted
EPC pages [11]. As the EPC pages and other SGX
specific data are required to be stored in the PRM,
the usable memory for applications within Intel SGX
is limited to approximately 90MB.

Threat Model

Intel SGX’s threat model assumes that the oper-
ating system and all application code could be com-
promised or malicious and are considered untrusted.
The CPU guarantees that the enclave memory can
only be accessed from the code running inside the en-
clave itself. This allows for enclaves to execute sensi-
tive computations without worrying about malicious
privileged code to read the sensitive data.

Intel SGX does not protect against application
bugs [13, 14] within the enclave, bugs on the imple-
mentation of Intel SGX, nor does it guarantee safety
against side channels attacks.

Memory Safety Violations

Enclaves can leverage code secrecy by self-
modification during runtime [15] [16]. This poses a
problem for those wanting to leverage return-oriented
programming (ROP) to exploit existing software. By
monitoring the exceptions thrown by the enclave,
Jaehyuk Lee et al [17] demonstrate new techniques
to find buffer overflows, ROP gadgets, and the de-
sired functions (e.g., memcpy) in enclaves utilizing
code secrecy. This allows the attacker to build an
ROP-chain to memcpy to copy data from the enclave
to normal memory.

Side Channel Attacks

A side-channel attack aims to obtain informa-
tion about an executing system through information
leaked through a side channel, such as power con-
sumption, timing information, or even sound. Cur-
rently, all known vulnerabilities affecting Intel SGX
can be mitigated through microcode updates from
Intel.

Prime+Probe is an example of a side-channel at-
tack, and it leverages the L1 cache of the processor to
determine what addresses were accessed. First, the
attacker primes the cache by accessing memory to fill
the L1 cache in its entirety. Afterward, when the vic-
tim’s process accesses memory addresses, some pre-
vious L1 cache portions are evicted and loaded with
the victim’s data. The attacker can now probe the
same addresses and measure the time it took to access
each address since accesses to the L1 cache are faster
than the ones to ram. He is now aware of which cache
lines got evicted. As the attacker knows the code and
the victim’s accesses pattern, he could potentially ex-
trapolate information about sensitive data.

Ferdinand Brasser et al [18] demonstrate the
Prime+Probe attack applied to Intel SGX. Firstly,
it requires that the enclave code is executed in the
same core as the attacker’s process, requiring mod-
ifications of the scheduler. Secondly, the enclave’s
uninterrupted execution is necessary so that the L1
cache is not polluted further, making it a require-
ment to have simultaneous multi-threading (SMT)
enabled, known as Hyper-Threading on Intel proces-
sors. The last condition also leads to the kernel’s
necessity never interrupting the core on which both
the victim’s code and attacker’s code run.

Foreshadow [19] exploits speculative attacks to
read memory from Intel SGX protected memory re-
gions. This includes the secrets used to seal data and
pass attestation services. Due to SGX’s privacy fea-
tures, an attestation report cannot be linked to its
signer’s identity. This means a single compromised
SGX machine could erode trust in the entire SGX
ecosystem. To fix this, Intel issued an update to the
microcode of the affected CPUs and revoked the at-
testation keys extracted with by foreshadow.

More recently, in Fallout [20] was demonstrated an
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issue in an undocumented optimization within Intel
CPUs, which was named Write Transient Forward-
ing (WTF). When an instruction attempts to write
a value to memory, the processor needs to translate
the virtual address to a physical address to acquire
exclusive access to it. To prevent stalling the store
instruction, the WTF optimization stores the address
and value in a buffer and continues executing the
program. Later, the addresses in the buffer are re-
solved and used to store the values in memory. Once
a value is stored in the buffer, subsequent loads to
that address need to load the buffer’s value so that
stale values are not read from memory. The proces-
sor matches the address in the load instruction to the
ones stored in the buffer.

To make the decision faster of where the values are
stored in the buffer, partial address matches are used
to rule out the need for store-to-load forwarding. An
issue arises when a load instruction with an address
stored in the buffer that is bound to fail (e.g., through
an access violation) incorrectly forwards the value of
the partially matched store instead of cleaning the
CPU state. An attacker may generate faults so that
load instructions would cause an error and incorrectly
forward the store value. Subsequently, an attacker
can use a Flush+Reload side-channel attack similar
to Prime+Probe to read the forwarded value. In-
tel classified this issue as a Micro-architectural Store
Buffer Data Sampling (MSBDS).

Zombieload [21] demonstrates the issues of MSBDS
in real-world scenarios leaking data from user-space
applications, the kernel, Intel SGX enclaves, other
virtual machines, and even the hypervisor. The same
paper showed a new technique similar to MSBDS
that, in addition to Intel TSX, allows for the data
leakage to occur on Intel Cascade CPUs, supposedly
resistant to MSBDS.

Cache-out [22] demonstrates that Intel’s fix on
Whiskey Lake CPUs is not enough to mitigate MS-
BDS attacks. It also demonstrated that an attacker
could select which cache sets to read from the CPU’s
L1 cache. Additionally, because the L1 cache is often
not cleared on context switches, it is feasible to ex-
ploit even on CPUs with Hyper-Threading disabled,
where the victim’s code runs subsequently to the at-
tacker’s code. This attack can extract secrets in Intel

SGX enclaves[23], including the keys used to seal data
and pass attestation. This essentially allows for any
code to pass as a legitimate enclave, even if not run-
ning within Intel SGX. Like foreshadow, this requires
for the extracted keys to be revoked by Intel.

2.2.2. OpenEnclave

OpenEnclave [24] is a hardware-agnostic Software
Development Kit (SDK) for trusted execution envi-
ronments, currently only supporting Intel SGX and
Arm TrustZone. This allows any developer to sup-
port a multitude of enclave solutions without worry-
ing about each system’s specifics. It automatically
partitions applications into two components, one to
be executed inside the enclave and the other outside
the enclave for operations not permitted inside the
enclave (e.g., system calls).

3. Related Work

In this Section, we will learn about some appli-
cations that Intel SGX has had throughout its life
by discussing their key features and comparing them
when applicable by pointing out the advantages and
disadvantages of each solution

Firstly, we explore technologies that aim to run un-
modified applications within a secure enclave’s lim-
ited instruction set. Secondly, we analyze some ap-
plications that have been created with Intel SGX in
mind, which results in much smaller code sizes than
the previous solutions.

3.1. Running legacy application on Intel SGX

Since porting entire applications is typically an ar-
duous task, focus has primarily been on automati-
cally porting applications [2] or running unmodified
applications inside Intel SGX [4, 3, 6, 5]. As the
enclave in Intel SGX excludes the operating system
from its trust computing base (TCB), thus eliminat-
ing the syscall instruction, it means the number of ap-
plications that can run natively, without any changes,
on Intel SGX is somewhat limited. This Section ap-
proaches some solutions that aim to run unmodified
applications inside the enclave and identify the key
differences in each solution.
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Figure 1: Secure container designs [3]

While state of the art solutions achieve the same
objective of running unmodified applications inside
Intel SGX, this can be achieved in various ways. Fig-
ure 1 shows three possible ways that achieve similar
results.

Figure 1a shows a design that places a Library OS
and a shielding mechanism inside the enclave. The
library OS allows the enclave to drastically reduce
the number of system calls made to the kernel, thus
decreasing the performance penalty associated with
leaving and entering the enclave. The shielding layer
protects a security-sensitive set of system calls, by,
for example, encrypting and decrypting I/O opera-
tions. The disadvantage of this type of design is that
by integrating the library OS inside the enclave, we
are significantly increased the size of TCB. Figure 1b
shows the extreme opposite of the previous design.
The application and its libraries are loaded onto the
enclave with a shim C library. The shim library in-
tercepts the C library calls and redirects them to the
C library that is loaded outside the trusted environ-
ment.

To our knowledge, no current implementation fol-
lows this extreme approach as they typically imple-
ment some shielding layer. This solution would also
imply a significant increase in the number of transi-
tions to and from the enclave, decreasing the appli-
cation’s overall performance.

Finally, Figure 1c shows a system that gathers the
best of both previous solutions. It includes in its TCB
a C library along with a shielding layer. All system
calls are passed down to the operating system either
by the C library or the shielding layer.

3.1.1. Haven

Haven [4] was the first solution to implement this
kind of paradigm and follows the implementation
in 1a. It allowed to run unmodified applications
shielded from the operating system. To achieve this,
Haven builds on top of Drawbridge [25] a system sup-
porting sandboxing of Windows applications leverag-
ing two mechanisms, microprocessors and a library
OS.

Figure 2: Haven components and interfaces [4]

A pico process can be seen as a container similar
to a docker container. It provides a relatively nar-
row application binary interface (ABI) consisting of
downcalls, requests for OS services and upcalls, uti-
lized for initialization, thread startup, and exception
delivery. The pico process is also a way for the op-
erating system to defend itself from the guest (the
application).

The job of the library OS in Haven, besides provid-
ing a ”user-mode kernel”, is to provide an abstraction
layer to the application with the ABI and the shield-
ing layer. Because Intel SGX protects the enclave
from the remaining system, Haven enables a mutual
distrust between the guest and the host.
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3.1.2. Scone

Scone [3] is a Linux solution similar to Haven, with
the exception that it does not require a library OS to
be loaded to the TCB (Figure 1c). To support ap-
plications inside the enclave, it runs inside the TCB,
a modified musl C library [26]. This solution also
provides a M:N threading model in which applica-
tion threads inside the enclave are mapped to N OS
threads.

Due to the lack of a library OS, Scone relies heav-
ily on the operating system to handle all the system
calls. While on applications with a low amount of sys-
tem calls, performance does not suffer too much, on
applications with a higher rate of system calls, perfor-
mance degrades significantly. To combat this issue,
Scone allows users to load an additional kernel mod-
ule to enable the enclave to perform asynchronous
system calls.

As all system calls can potentially return mali-
cious values, the shield layer must perform verifica-
tion, similar to how the kernel OS protects itself from
data coming from userspace.

Scone also permits shielding of external interfaces
with transparent encryption of files, transparent en-
cryption of communication channels via transport
layer security (TLS) and transparent encryption of
console streams (STDOUT, STDERR and STDIN).

Scone also allows us to keep confidentiality and in-
tegrity on files written and read by the enclave.

This solution has, since its release, gone closed
source offering both a community edition and paid
services [27]. The community edition runs exclusively
in pre-release mode with debugging enabled and pro-
vides a set of curated images ready to be used. Al-
ternatively, the community edition also provides com-
pilers and runtimes for some languages. In the origi-
nal paper [3] an optional kernel module is mentioned
to improve system calls performance, but the web-
site [27] for Scone does not mention this feature.

3.1.3. SGX-LKL

SGX-LKL [6] is a fork of the early stages of Scone,
and contains some similarities. Like Scone it pro-
vides similar functionalities, such as transparent file
encryption and a M:N threading model. Contrary

to Scone it embeds a library OS, the Linux Kernel
Library (LKL), in the TCB.

As it contains a library OS inside the TCB, it
allows for a minimal host interface, providing only
seven system calls. One system call for time-aware
applications, two system calls for disk I/O, two sys-
tem calls for network I/O, and two system calls for
signaling.

SGX-LKL does not provide the same type of shield-
ing as Scone for network connections, but it allows
the enclave to create a TAP device connecting to a
network via the wireguard [28] virtual private net-
work (VPN). This essentially allows the creation of
a distributed network guaranteeing that only trusted
nodes are present.

To hide disk I/O events instead of instantly per-
forming a disk I/O call, these are inserted into a
queue until there are enough changes to be written to
disk. This allows us to hide from the operating sys-
tem when the applications are reading or writing spe-
cific files. If the application does not generate enough
disk I/O activities, random activities are performed
to mask it. This prevents side-channel attacks on the
enclave from operating regarding the enclave’s inner
workings when working with I/O operations.

3.1.4. Graphene

Graphane [29] is a library OS that aims to be as
host independent as possible, aiming to be a sub-
stitute to current virtualization by containerization
solutions. Its goal is to allow Linux applications to
be executed in any environment (e.g., BSD, OS X,
Windows), without relying on virtualization. This is
achieved by creating a similar architecture to Haven,
a pico process is created with the wanted executable,
its dependencies and the Graphene library OS. Sys-
tem calls are translated to the host via a platform
abstraction layer (PAL), which, as the name implies,
is an abstraction layer that changes with the oper-
ating system. One key difference from Graphene to
Scone and its derivative works is that instead of using
the musl c library, it uses the gnu c library.

Graphene-SGX [5] handles Intel SGX as just one
more environment on which the applications may
run. To run unmodified applications under Intel
SGX, a port of the PAL was made to Intel SGX.
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This allows, similarly to Haven, a mutual distrust
from the host and the guest. It is one of the few,
if not the only solution, that allows the creation of
forks of existing processes. When a process is forked,
a new clean process is created. Then the two en-
claves, via an inter-enclave remote process communi-
cation stream, exchange an encryption key, validates
the CPU-generated attestation of each other, and mi-
grates the parent process snapshot. The current so-
lution leaves for future work the protection of the
network and file system.

To load an unmodified program to Graphene-SGX,
it first creates hashes of the program, its dependen-
cies, saves it to a file, and signs it, essentially cre-
ating a whitelist of permitted files. Later, when the
application executes inside the enclave, checks the
executable and the utilized files against the created
whitelist.

3.2. SGX Native Applications

In this Section, we overview some solutions that
utilize Intel SGX in order to widen its threat model to
have stronger guarantees that the desired data is kept
confidential from even the operating system itself.

3.2.1. SafeKeeper

SafeKeeper [30] is an approach to protect the con-
fidentiality of passwords in web authenticated sys-
tems through the use of Intel SGX, protecting even
from malicious or compromised servers. It considers
a very strong adversary in its design, with access to
the password database, ability to modify the web con-
tent sent to the user, access to the server-client com-
munication, server-side code execution and phishing
attempts. It also assumes that the user only enters
passwords on SafeKeeper enabled web services.

This approach has two components, a server-side
password protection service to safeguard the pass-
words from the rest of the code running in the server
and a browser add-on to correctly identify web ser-
vices running SafeKeeper and securely communicate
with them.

The server-sided password protection service is de-
signed as a drop-in replacement for existing one-way
functions. It takes a salted password as an input

and the result is a keyed one-way function, which
is stored in the database. In order to protect the
key utilized, it never leaves the enclave in clear text,
all computation of the one-way function is made in-
side the secure enclave. An adversary with access
to the password database cannot perform an offline
password-guessing attack as it does not know the key
used in the one-way function. This forces the adver-
sary to an online-only type of attack against the web
service, which can be rate limited by the service.

The browser add-on needs to correctly identify that
it is communicating with the SafeKeeper password
protection service to transmit the user’s password se-
curely. The identification of the service is made via
remote attestation of the secure enclave to guarantee
that it is talking to a genuine Intel SGX enclave and
to verify its contents. Additionally, this attestation
protocol establishes a shared session key in order for
the client to establish a secure communication chan-
nel with the enclave, on which the login credentials
will be sent.

3.2.2. Intel SGX Key Store

Keys in the Clouds is a solution presented by Ar-
seny Kurnikov et al. [31] that aims to create a web
service that utilizes Intel SGX as its trusted execution
environment to create a secure key store accessible
from anywhere.

It works as a web service and leverages Intel SGX
to store and utilize the key securely, the service per-
mits the key owners to utilize keys, delegate it to
other users and audit its usage. Integration with
GnuPG and OpenKeychain are provided on Android
systems.

To guarantee that the user is in fact, speaking with
a genuine Intel SGX enclave, remote attestation is
performed through the same efficient remote attesta-
tion protocol as proposed by the SafeKeeper.

3.2.3. tpmsgx

The utilization of Intel SGX on a cloud-like en-
vironment is especially difficult because data is en-
crypted with a per enclave per device key and be-
cause the physical memory available to the program
is at most 128 MB, with around 40 MB being already
used for the management of SGX itself.
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Dave Tian et al. [32] propose a system so that ap-
plications can leverage Intel SGX in a cloud-like en-
vironment for multiple users through the use of an
emulated TPM and LXC containers.

The solution acts like a ”TPM as a service” for
applications to use without resorting to solutions like
Haven [4] that requiring moving a big code base to
the enclave. Unlike traditional TPMs, it does not
allow the TPM use before the operating system is
initialized, meaning it cannot be used for secure boot.
This service allows for multiple applications to utilize
a single enclave as TPM, rather than each application
initializing its own enclave.

The implementation specifies that, if remote attes-
tation is enabled, communication between the server
and the client is encrypted by an AES128 shared se-
cret that is established between them. The publica-
tion does not specify if or how the client authenticates
communicating with a genuine Intel SGX enclave.

3.2.4. SGX-Kernel

Although Intel SGX is limited to running code in
user mode, Lars Richter et al. [33] propose a solution
that allows the kernel to delegate some of the work to
an enclave, in order to isolate kernel with Intel SGX.

The system is compromised by two components, a
kernel module, and a secure enclave running in user
mode. The kernel module acts as proxy for the secure
enclave and their communication is made through a
Netlink interface, allowing the kernel to delegate work
to be done in the secure enclave.

A proof of concept is demonstrated by creating
a file system managed by the enclave, which is re-
sponsible not only for its storage but encryption as
well, guaranteeing, that the encryption key is never
exposed to other applications or other kernel mode
code.

3.2.5. Aurora

Secure enclaves within Intel SGX are limited to a
subset of instruction, this coupled with it running
exclusively in user mode, disallows it from commu-
nicating directly with the hardware, because of this
I/O is typically left out from the threat model. AU-
RORA [34] aims to solve this by creating a trusted
path between an enclave and a target I/O device.

This is achieved by adding code to the Unified Ex-
tensible Firmware Interface (UEFI) to reroute I/O in-
terrupts to the System Management Interrupt (SMI)
by configuring the Advanced Programmable Inter-
rupt Controller (APIC) and registering SMI handlers.
SMVisor is the core component in AURORA, that
handles this notifies the enclaves as necessary via an
inter-processor interrupt. In order for the enclave to
communicate with SMVisor a special ioctl is utilized
on the ashmd module, a module which allocates con-
tiguous physical memory as shared memory in order
to facilitate the communication between the enclave
and the SMVisor.

To guarantee that both the SMVisor and the en-
clave are not communicating with a malicious party
or to guarantee that no man in the middle attack
is occurring, mutual attestation is performed. Dur-
ing a measured boot, Intel Boot Guard hashes the
firmware and saves the result in the TPM Platform
Configuration Register (PCR). An enclave can con-
firm that SMVisor has not been tampered by query-
ing the TPM which will answer with a cryptographic
signature over the PCR value along with a nonce to
prevent replay attacks. The attestation of the en-
clave is performed during the launch of the enclave
via Intel’s local attestation.

4. Design and Implementation

This Section describes the designs and implemen-
tations for tamper prevention of sensible data, partic-
ularly encryption keys. First, we show a modification
to Apache’s web server where the TLS termination is
moved to a secure enclave. Subsequently, in Subsec-
tion 4.2 we show an encryption key storage imple-
mented in Intel SGX leveraging OpenSSL engines.
This solution offers less protection than the former
but is contrasted by its versatility and better perfor-
mance, allowing any application to integrate with it
through OpenSSL easily.

4.1. Integration of Apache’s Web Server SSL Module
within Intel SGX

This Section describes the modifications made to
mod ssl to make it compatible with Intel SGX to pro-
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tect both the asymmetric private key and the nego-
tiated symmetric key from unwanted third parties.
This was achieved by moving the TLS implementa-
tion to the TEE, and thus preventing access from
both the operating system and the hypervisor. It
also analyzes various cryptography libraries available
to Intel SGX and identifies that WolfSSL [35] is suit-
able for our needs and identifies a new issue on the
TaLoS [36] library.

The implementation described in this Subsection
is open source and available in a public repository on
GitHub [37].

4.1.1. Architecture

Our system should follow the typical architecture
of any Intel SGX application containing both un-
trusted and trusted components. The former is re-
sponsible for the interaction with the operating sys-
tem interacting and querying the latter when working
with sensitive data when necessary. This segmenta-
tion of the application is necessary due to the limited
instructed set an enclave has access to, which does
not allow it to communicate with the operating sys-
tem via the syscall instruction.

Figure 3: Proposed architecture for the Apache’s HTTP server.

Figure 3 demonstrates how the modified SSL mod-
ule works at a very high level. By redirecting the
calls from the original OpenSSL to our enclave (1
in Figure 3), the enclave can utilize the private keys
or other sensitive data in its possession along with

a cryptography library (2 in Figure 3) to establish a
TLS connection so that it can encrypt the outgoing
data and decrypt the incoming data.

This guarantees us that the asymmetric private key
and the randomly chosen symmetric key of the TLS
connection stay inside the enclave, making it impos-
sible to be read by unwanted parties. Finally, as with
any application, the enclave must return the result of
the function to the untrusted code (3 in Figure 3) so
that normal operation can continue. If the resulting
value to the function call to the cryptography library
is a pointer, a random id is generated, added to the
proxy and returned instead of the pointer.

To mitigate arbitrary reads and writes to the en-
clave’s memory [38], we must implement a proxy that
sanitizes the inputs received by the untrusted appli-
cation seen in Figure 3.

4.1.2. Cryptography Library

Intel provides a fork of OpenSSL compatible with
Intel SGX [39](Intel SGX SSL), but its functionality
is rather limited, not allowing for an application to
terminate its TLS connections inside the enclave.

Our second choice was TaLoS [36], a LibreSSL im-
plementation for Intel SGX, which allows applica-
tions with little to no changes to terminate their TLS
connection inside the enclave. This would be the ideal
candidate since LibreSSL itself is a fork of OpenSSL
and would require minimal changes to achieve our
goal. However, Tobias Cloosters et al. [38] discovered
several security vulnerabilities that allow arbitrary
read and write to the enclave from the untrusted
code. The patches necessary to fix this issue are sub-
stantial, and the author of the library claims it will
not be fixed. We will, later, explain how we prevent
such attacks in our solution.

The chosen library for our solution was Wolf-
SSL [35], which supports terminating TLS connec-
tions inside Intel SGX. Additionally, it also contains
a compatibility layer for OpenSSL, allowing it to be
used on most applications that utilize OpenSSL.

4.1.3. Mitigating Memory Corruption Vulnerabilities
in SGX Enclaves

Although there are legitimate cases to receive and
return pointers without safety checks, this is highly
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discouraged. If incorrectly used, it could very easily
allow memory corruption within the enclave from un-
trusted code, leading to arbitrary reads, writes and
maybe even code execution in certain cases [38].

Any function within the enclave that accepts a
pointer without safety checks and is exposed to un-
trusted code could be a potential read/write primi-
tive for an attacker.

Appendix A.1 shows a very simple function in
WolfSSL [35]. It returns the variable rfd in the
pointer to a structure of type WOLFSSL. At a lower
level, this means that the processor will add the off-
set of rfd in the structure WOLFSSL to the pointer
provided in ssl, read the contents of the resulting ad-
dress, and return it. While it may seem harmless to
expose this function to untrusted code, this gives an
attacker a read primitive to an Intel SGX enclave.
This is because nothing guarantees that the pointers
passed to the function are of the type WOLFSSL.
This function will return an integer at the offset of
variable the rfd in the WOLFSSL structure pointed
by the parameter ssl. Since the parameter ssl can
point to anywhere in memory, an attacker can read
any memory inside the enclave. Similarly, the func-
tion in Appendix A.2 shows a write primitive to an
Intel SGX enclave if exposed to untrusted code.

To mitigate this attack, the enclave must perform
safety checks on the passing points. In our solution,
we chose to create a hash map for each type of struc-
ture used and exported to untrusted code. This al-
lowed for constant-time access to the saved pointers
regardless of the number of existing pointers.

Figure 4: Preventing memory corruption in the enclave.

When the untrusted code calls a function in the
enclave (1 in 4), the enclave will first check if any of

the ids passed exist in the hash map. If the passed
ids contain a valid entry in the hash map, the call
is forwarded to WolfSSL (2 in Figure 4). If the re-
sulting function returns a non-NULL pointer, it is
checked if it exists in the hash map and returns the
corresponding id to the untrusted application. If no
entry is found, it will generate a truly 64-bit integer,
through the rdrand instruction, insert it in the hash
map with the corresponding pointer, and return the
id to the untrusted code (4 in 4).

A hash set could have been used in place of the
hash map, but it would require returning a pointer
inside the enclave to untrusted code. As any data
that resides within the enclave is not accessible, we
believe that this information is not important to the
untrusted code. This way, we prevent the attacker
from gaining knowledge about the location of the ob-
jects inside the enclave. We also believe that return-
ing an id instead of the pointer to the enclave’s data
may hinder heap-spraying. This attack consists of al-
locating large amounts of memory in the heap so that
an attacker can place the desired data in a predeter-
mined location. Because allocations will always re-
turn a random 64-bit integer, the attacker will never
know if data was placed in the desired location.

Having a single hash map would probably suffice in
translating ids to pointer (i.e., ids to void* ). We de-
cided to create a hash map for each type used within
WolfSSl/OpenSSL. This allowed even for adequate
control over the ids passed as it guarantees that the
wrong object type is never passed to a function (e.g.,
passing a WolfSSL RSA pointer to a function that
expects a pointer to BIO), without a performance
penalty over using only one hash map.

When the function to free the object is called, the
corresponding id and pointers are removed from the
corresponding hash map. This means that the un-
trusted code cannot intentionally leverage use-after-
free exploits as when calling a function with an id
that is no longer in the hash map will cause the func-
tion call to not be forwarded to WolfSSL and instead
return with an error.

4.1.4. Changes to mod ssl

The approach taken to modify mod ssl was to keep
the original code untouched as possible by changing
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Figure 5: mod ssl input chain

only OpenSSL functions’ calls. This would allow us
to merge eventual patches from the original branch
more easily. Unfortunately, since the cryptography
library’s memory region is not accessible from the
module, some issues arise, requiring modifications to
the code base of mod ssl.

OpenSSL Callback Support

The original TLS module takes advantage of
OpenSSL’s input/output stream abstraction layer
to tell OpenSSL how it should read data for the
SSL read and SSL write functions. An application
can register a callback that will be called by OpenSSL
to write and read the encrypted contents.

After the connection is upgraded to TLS, it cre-
ates an SSL context for the connection and sets the
callbacks to handle the input/output.

Figure 5 shows roughly the input chain used in
mod ssl. First the http server notifies the module
via the ssl io filter input a request for data. If it
determines that it should read data, it will call an
helper function which calls the OpenSSL function
SSL read. Since OpenSSL has been instructed to
use bio filter in read to read the data from, it will
call it. Finally, bio filter in read will then try to
fetch data from the next httpd filter and return it
to SSL read, which will decrypt it and return it to
ssl io input read. The output chain follows the same
pattern, registering a function to tell OpenSSL on
how to perform writes

If the cryptography library is inside an Intel SGX
enclave, the application may still register the call-
back to functions outside the enclave, but when the
enclave tries to execute that function, a segmenta-
tion fault will occur. This is because enclaves are not
allowed to execute instructions outside its memory
range without first issuing a special ocall instruction
to leave the enclave.

To overcome the issue mentioned above, we resort
once again to hash maps, which will hold a pointer

to an array containing all possible callbacks in the
BIO METHOD and a static callback for each call-
back which will resolve the correct pointer and for-
ward it to untrusted code to execute. Appendix B.1
shows a simplified concept of this in practice, when
BIO meth set read is called instead of forwarding the
call to the enclave, it is saved in its corresponding slot
in the created array, the registered callback to Wolf-
SSL will instead be a function within the enclave.
When called, the callback will obtain the real pointer
saved in the array and tell the untrusted code to exe-
cute it. The functions GetBioCallbackArray and Cre-
ateBioCallbackArray simply get and create the nec-
essary array in the hash map.

Additional Getters/Setters

Even though OpenSSL 1.1 removed many of its
structures from the public header files so that they
become opaque and force the usage of accessor func-
tions [40], not everything got the same treatment.
Structures such as the GENERAL NAME are not
opaque and still rely on the application to directly
access the data in the pointer returned by OpenSSL.
This poses two problems, one specific to our solution
and the other due to Intel SGX. First, as mentioned
in Subsection4.1.3, our library does not return real
pointers, but instead randomly generated ids, mean-
ing any attempt to dereference the pointer will most
likely result in an access violation, crashing the pro-
gram.

Secondly, Intel SGX enclaves when running in re-
lease mode do not allow access from untrusted code.
This means, similarly to the first issue, trying to ac-
cess the data it points to will cause an access viola-
tion. Because of the latter issue, we believe that Ta-
LoS [36], even though it claims support for Apache’s
HTTP server, it does not handle these cases within
the LibreSSL library. This means it will only work
in pre-production mode, allowing access to the en-
clave’s memory from any code. Attempting to use
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the library in production, i.e., enclave compiled in
release mode, would cause segmentation faults when
accessing data that resides in the enclave.

Sealed Key Detection

As we wanted to retain as many features as possible
from the original module, we decided to load normal
keys and sealed keys by the enclave. We modified the
module first to load a sealed key, and if it failed, try
to load the key normally. For convenience and help
users identify what kind of key they have in storage,
we append the suffix ’.sealed’ to the end of the file’s
name.

4.1.5. Limitations

During its normal operation, the Apache HTTP
server will create multiple forks to handle multiple
connections. However, this feature is not well sup-
ported by secure enclaves. Since the enclave’s mem-
ory space is not accessible to the operating system,
it cannot be copied to the forked process. While it
would be possible to detect a fork and reinitialize
the enclave, all its contents would be reset to the de-
fault values, meaning all the data that the server re-
lied on are gone. Synchronization might be possible,
but it would require significant changes to WolfSSL.
This means our solution is limited to working in a
single process, severely limiting the number of possi-
ble connections that can be handled simultaneously.
This is a limitation present in TaLoS [36] as their
source code repository suggests running the HTTP
server in single-process mode. To our knowledge, the
only solution that implements and supports forking is
Graphene-SGX [5] through inter-enclave communica-
tion but with a high overhead when compared to the
native fork of a normal application, with a latency
increase of 8000 fold, which becomes worse with the
increasing size of the forked enclave.

4.1.6. Security Analysis

In this Subsection, we present a security analysis of
the proposed solution to move the TLS termination
to a secure enclave.

Access to encryption keys

Since the cryptography library’s code is exclusively
inside a secure enclave, this means that both the
asymmetric private key and the negotiated symmet-
ric key between the client and the server during the
TLS connection handshake are kept secret by Intel
SGX. Any external code to the enclave that attempts
to access the protected memory regions will raise an
access violation exception regardless of its privilege.

4.1.7. Architecture

Enclave memory corruption

As mentioned in [38] if an enclave exposes functions
accepting arbitrary memory points without safety
checks, there may exist functions facilitating read and
write primates to the enclave’s memory, defeating the
purpose of an Intel SGX. This might be considered a
software bug, which means it is not something Intel
SGX should be protecting against. To ensure that
arbitrary write and read are blocked, our solution
performs safety checks as presented in 4.1.3 before
forwarding the request to the cryptography library.

Key usage

The current solution allows for any code to call the
enclave and utilize the private key. Future iterations
of this solution could log to a remote server the usages
of the asymmetric private key.

4.2. OpenSSL Engine Integration

As we will see in Section 5, the previous solution
comes with some big caveats and a high-performance
penalty. Thus, we started looking for other ways to
protect the private key used by untrusted software.
This Section describes our implementation of a key
store that uses Intel SGX to keep its contents se-
crets and its integration with an OpenSSL engine.
This solution it allows for any application that uses
OpenSSL as its cryptography library to use the keys
protected by an enclave, guaranteeing its integrity
and confidentiality, this approach works very simi-
larly to a hardware security module, a pkcs#11 de-
vice, an Android’s phone keystore system[41] or web-
services like HashiCorps’ vault[42]. Unlike the pre-
vious implementation it does not protect anything
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Figure 6: OpenSSL Engine with SGX key store architecture.

besides the private key utilized, meaning that if an
application utilizes the private key to establish estab-
lished symmetric keys in their TLS connections these
would be accessible to an attacker with read access
to the address-space of the application holding these
keys.

The solution described in this Subsection is open
source and available in a public repository on
GitHub [43].

As in this implementation the enclave works in a
very similar manner to a pkcs#11 device. It exposes
a limited number of functions limiting the attack sur-
face. The exposed functions only need to allow un-
trusted code to load private keys and perform opera-
tions with it (i.e. Encryption and Decryption). Table
1 shows the functions exported by the enclave and
their functionality. As the RSA object in OpenSSL
needs to contain at least the modulus and the public
key exponent, a function exists to export values out
of the enclave.

To make it possible for applications that use
OpenSSL to use our solution easily, we implemented
an OpenSSL Engine, which at a very high level es-
sentially instructs OpenSSL on how to load and uti-
lize keys from a custom solution. Our engine imple-
mentation was based on the Android Open Source
Project [44] due to its simplicity. As the source
code targets a version of OpenSSL before 1.1, with
the OpenSSL Engine’s help for pkcs#11 devices,
libp11 [45], we updated its source code to target
OpenSSL 1.1.1g.

The Engine registers a callback on OpenSSL for the

event that loads a key. When this callback is called,
it attempts to load the key. If the key is successfully
loaded from the key store, custom methods are set for
the encryption and decryption of data when using the
key. These methods, when called, will forward the
request to the enclave.

We chose not to load the enclave inside the
OpenSSL engine, as this would mean the enclave
would need to be loaded in the same process as the
application using OpenSSL. This would require in-
stalling fork detection in our Engine and reinitializing
the enclave in the forked process, ultimately wasting
the physical memory allocated to SGX unnecessar-
ily. Instead, our solution runs in a separate applica-
tion, what we call the server, and listens on a UNIX
socket domain for inter-process communication. The
OpenSSL engine will then connect to the socket and
forward its requests and wait for a reply.

In Figure 6, we exemplify an application that uti-
lizes a private key present within the enclave to de-
crypt some data. Firstly, OpenSSL receives this re-
quest and checks if any custom handlers for these
requests exist, normally set by an OpenSSL Engine.
When our OpenSSL engine receives a request, it at-
tempts to establish a connection to the server and
send the request to it. The server will then finally
forward the request to the secure enclave, which will
process the data and return it.

Similarly to the implementation in Section 4.1, to
prevent memory corruption vulnerabilities within the
enclave, no real pointers are passed to and from the
enclave. When an application loads a key via the en-

14



Exported enclave function Purpose

enclave private encrypt Encrypts(Signs) data with the given private key

enclave private decrypt Decrypts data with the given private key

enclave rsa get n e Gets modulus and the public exponent of a key

enclave rsa load key Loads a key into the enclave

seal data Encrypts data with an unique key to the enclave, used to ’import’ keys

gen rsa key Generates an RSA key inside an enclave, seals it and returns it

Table 1: Exported function by the enclave to perform cryptography operations on a private key

clave rsa load key function, a key id is returned and
on the remaining functions that require a reference
to the key, this id is used instead.

4.2.1. Cryptography Library

Unlike the implementation in Section 4.1 the func-
tionality required from the cryptography library is
much smaller. The only requirements needed by the
library is the ability to load an RSA private key and
perform operation with it. Fortunately, even though
the functionality of Intel® SGX SSL [39] is rather
limited, it provides support for the required features.
We chose this library over WolfSSL [35] as it is a fork
from OpenSSL. It is giving us a simple one to one
match of the functions utilized by other OpenSSL
Engines.

4.2.2. Configuring OpenSSL

To make OpenSSL aware of the Engine and make
it so that other applications can use it, a few modifi-
cations need to be made to install OpenSSL. On an
installation of OpenSSL through Ubuntu’s package
manager, Appendix B.2 needs to be added to the
configuration file /etc/ssl/openssl.cnf. In addition to
configuring OpenSSL, the Engine needs to be copied
to the configuration file’s path. This should make it
possible for any application to use the Engine, even
from command like as shown in Appendix B.3.

4.2.3. Required Modifications to Applications

Applications that utilize OpenSSL may easily be
adapted to use any engine available. By calling
the OpenSSL function ENGINE by id with the id

of the Engine, a reference to the Engine is ob-
tained. Subsequently, the application must call EN-
GINE init to initialize it. To load a private key
from the Engine, OpenSSL provides a function EN-
GINE load private key, which attempts to load a
key from the Engine and returns a reference to a
EVP PKEY object which can be used as if it were a
key loaded through the conventional OpenSSL API.

Adding support to Apache’s HTTP server

When Apache’s HTTP server attempts to load a
key or a certificate, it checks if the provided Uni-
form Resource Identifier (URI) contains a colon and
if its prefix is a supported OpenSSL Engine. If it is
a supported engine, the server attempts to load and
initialize the Engine with the same id as the prefix in
the URI, in our case, sgxkeystore. For example, the
URI sgxkeystore:key.pem.sealed would result in the
initialization of the engine sgxkeystore, loading the
key ”key.pem.sealed”. As the original code already
supports pkcs#11 devices through libp11’s OpenSSL
engine [45], adding support for another engine is a
simple process. The only changes required are to de-
tect the prefix in the URI, as shown by the patch in
Appendix B.4.

4.2.4. Security Analysis

This Subsection presents a security analysis of cre-
ating a key store with SGX and making it usable to
external applications.

Access to Encryption Keys

Unlike the solution presented in Section 4.1 this
implementation does not protect the symmetric keys
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during a TLS connection. It works very similarly
to a hardware security module (HSM) or, more pre-
cisely softHSM [46], which emulates an HSM in soft-
ware. As our solution only implemented support for
RSA keys, it only guarantees the secrecy of these
keys. Meaning if the key store is utilized for TLS,
the agreed symmetric key would be exposed to un-
trusted code.

Key Usage

Like the first solution presented in 4.1, the current
implementation allows for any code being executed
to make requests to the sgx key store to sign and
decrypt data with the private key. The current so-
lution utilizes UNIX domain sockets to communicate
with other applications, this means that it is easily
adaptable to network sockets so that future iterations
could leverage a solution as presented in [31], allow-
ing only authenticated access to the keys and logging
key usage.

5. Results

This Section presents the performance tests made
to our solutions and compares it to other existing
solutions presented in Section 3.

Our evaluation used an Intel Nuc NUC6i7KYK, a
quad-core 2.60 GHz Intel Core i7-6770HQ with 16GB
of dual-channel DDR4 memory running Ubuntu
18.04.3 LTS, with Linux Kernel version 5.0.0-32. The
amount of allocated memory to Intel SGX is 128MB.

The utilized version of Graphene-SGX was the one
available in its public GitHub repository [47] at com-
mit b4673dc171fbe4e972bea4dc79aae17212bc29da.

Just like Graphene-SGX, SGX-LKL was obtained
from its public GitHub repository [48] at commit
a4fc0cc6fea39f30d33783e55626afbff3c7a871.

To utilize Scone, access to the community edition
was requested and granted. There wasn’t any
versioning besides the date on the docker images.
The cross-compilers image from scone has digest
899ef9b2415bd2252c8a3ce396599cc957405f9c9333f6b
7d39d95fe98fc00f2.

5.1. I/O Intensive Application

Not all applications can have the privilege to load
all the necessary data to memory, especially in Intel
SGX, since its physical memory is at most 128MB,
with the application only being able to use around
90MB. To solve this, applications may load data as its
needed. This implies that the application will need to
make more I/O operations. As leaving and entering
the enclave is a relatively expensive task, we believe it
is also interesting to test the overhead in these types
of applications.

5.1.1. Methodology

To test this type of load we have ten files, each
containing 256 MiB of random data. To increase and
decrease the amount of I/O operations, we change
the amount of data that it is loaded to the enclave at
a time. We utilize this data to calculate the sha-256
of the files with various buffer sizes to see how Intel
SGX behaves with a large amount of transitions and
exceeds the amount of physical memory available.

5.1.2. Results

In Figure 7 Native is the application running nor-
mally without Intel SGX, it gives us a baseline so
that we can compare with other solutions that lever-
age Intel SGX. We can see that increasing the buffer
size beyond 1 MiB gives us diminishing returns.

Native-SGX represents our port of the same appli-
cation to utilize Intel SGX, with a buffer of just 64
bytes. The average time taken to hash each file was
13,81 seconds. This first value of this solution is not
represented in the graph because we chose to limit
the graph’s vertical axis to 5 seconds to get a bet-
ter view of the other solution relative to each other.
This considerable increase compared to the other so-
lutions that utilize Intel SGX is due to the lack of
asynchronous calls to and from the enclave.

As the number of transitions decreases, so does the
execution time until 1 MiB, buffers higher than that
increased execution time when executed under Intel
SGX. We have no explanation for these results.

From the performed tests, we can also see that
Graphene-SGX [5] was the solution that provided the
least impact on performance on this test, performing
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Figure 7: Average time (with sigma error bars) taken to hash
256 MiB of random data on disk with different buffer sizes.

similarly to the application ported manually to SGX
on buffers of size equal to 1 MiB or higher. Scone [3]
performed slightly worse overall when compared to
Graphene-SGX.

We were not able to run the application under
SGX-LKL as it kept causing segmentation faults on
fread and fclose systems calls.

5.2. OpenSSL Engine

In this Section, we present the test case for our Intel
SGX key store integrated with OpenSSL. For this we
measure the overhead associated with our solution
when utilizing RSA private keys.

5.2.1. Methodology

Our first engine test was based on OpenSSL’s
speed module, which benchmarked various algo-
rithms within OpenSSL. We tested five different RSA
key bit sizes, 512, 1024, 2048, 3072 and 4096. For
each key size, 15,000 RSA SSL signatures were per-
formed on 36 bytes of random data and repeated ten
times so that we could take the average execution
time and its associated error. The 36 bytes of ran-
dom data was chosen as it was the value utilized in
OpenSSL’s benchmark. The test was executed on our
solution and the default OpenSSL RSA implementa-
tion running outside an SGX enclave and within one
using Graphene-SGX [5], SGX-LKL[6] and Scone[3].

5.2.2. Results

In Table 2 we can see our solution described in Sec-
tion 4.2 identified by ”OpenSSLEngineSGX” com-
pared to the standard OpenSSL implementation run-
ning natively and under different environments with
various RSA key sizes. When utilizing small key sizes,
which results in a fast signature computation, our so-
lution is significantly slower than the native solution,
decreasing the number of signatures per second by
42.1%. On the more expensive key sizes, the decrease
in performance is as low as 4.36%. SSL Labs shows
that the most common key strength on Alexa’s list of
the most popular sites in the world is 2048 bit [49], on
which our solution performs 15.07% worse than the
native solution without any protection. Verification
of signatures is unaffected as it is an operation that
uses the public key, which does not need to have the
same level of protection as the private key, meaning
it can run with its native implementation outside the
enclave.

We can also see that our solution from the solu-
tion that utilizes SGX performs significantly worse
up until RSA key sizes of 2048 bits. We believe this
is due to an increase in enclave transitions and the
lack of asynchronous calls. Solutions like Graphene-
SGX, SGX-LKL, and Scone run the entire applica-
tion inside the enclave, meaning there is no need to
leave and enter the enclave on every operation. As
the transitions to and from the enclave decrease, we
can see that our solution’s relative performance ap-
proaches the native solution and beats both SGX-
LKL and Scone.

We have also noted that, out of the solutions that
aim to run unmodified applications inside an enclave,
Scone seems to be the one that performed the worst
in this test case, just like the one presented in 5.1.

5.3. Apache Web Server - TLS

This Section presents the test case for our imple-
mentations applied to the Apache web server when
utilizing HTTPS. We test our implementations de-
scribed in Section 4 along with some solutions pre-
sented in the state of art that aim to run unmodified
applications within Intel SGX.
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Solution 512 1024 2048 3072 4096

Native 23286± 171 10646± 59 1685± 3 545± 1 252± 0

OpenSSLEngineSGX 13473± 247 7750± 63 1431± 41 523± 5 241± 1

Graphene-SGX 23156± 100 10520± 31 1684± 1 564± 0 252± 0

SGX-LKL 22088± 104 10504± 52 1615± 2 536± 0 240± 0

Scone 18785± 380 8795± 59 1491± 3 504± 1 226± 0

Table 2: RSA signatures per second on different solutions and various key sizes, in bits

5.3.1. Methodology

We use a two Core 3.90 GHz Intel Pentium Gold
G5600 with hyper-threading enabled with 8GB of
dual-channel DDR4 memory as the client to bench-
mark the Apache webserver instances. The server is
as indicated at the beginning of Section 5. Both ma-
chines are connected to the same local network, the
client being connected through an SPF+ 10 Gbps
card and the server utilizes a 1 Gbps Ethernet card.
We chose to utilize a separate machine to run the
benchmark tools so that the benchmark tool’s work
would not interfere with the web server’s work, fight-
ing for computational resources.

To measure each solution’s impact on the web-
server, we utilize ApacheBench [50] on the client
machine to generate a workload on the server. On
each test, the tool is executed nine times, performing
10000 requests and each time doubling the number of
concurrency connections from the previous execution,
except the last test, we used 196 concurrent requests
instead of 256 as it started causing requests to be
dropped. The tools measure the average throughput
(requests per second) and the average latency of each
request.

5.3.2. Results

In figure 8, we can see both of our solutions
compared to the normal Apache webserver running
normally and with Graphene-SGX [5]. We can
see that our solution utilizing the custom OpenSSL
Engine (OpenSSLEngineSGX in Figure 8) shows
performance similar to the original Apache web
server, clearly outperforming Graphene-SGX while
still guaranteeing integrity and confidentiality of the

private key utilized to initialize the TLS connection.
We can also see that the overhead shown in table 2
is not enough to affect the Apache web server in our
test, indicating that the bottleneck is somewhere else
in Apache’s web server.

Figure 8: Throughput versus latency of Apache’s web server
workload.

Both the original Apache web server and our solu-
tion leveraging our key store through an OpenSSL
Engine peak at approximately 10 700 requests per
second. Graphene-SGX [5] has its peak through-
put cut in 51.4% at approximately 5 200 requests
per second. Before the rise in latency, all these
showed a latency smaller than a millisecond. The
solution implemented in Section 4.1 is the solution
(ApacheModSSLSGX in Figure 8) that performed
the worse. This can be explained by the significant in-
crease in transitions to and from the enclave required
during the normal operations of the webserver when
requiring calls to the cryptography API. If we take
the example of Figure 5 in our solution, we have four
enclave transitions, the call to SSL read (to enclave),
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the call to bio filter in read (from enclave), and the
return of the previous two functions. Compared to
Graphene-SGX, this input chain would cause two en-
clave transitions for the read system call. Addition-
ally, we needed to restrict Apache to a single process
due to forking issues regarding secure enclaves, caus-
ing further performance issues. All this leads to a
minimum latency five times higher than the other so-
lutions and a maximum throughput of 1500 requests
per second.

We attempted to load the webserver in SGX-LKL,
but we were not able to utilize it. We discovered
that even though the server started listening on the
specified ports and accepted the TCP connections, it
did not reply with the contents of the page, and the
connection just hanged.

Although Scone [3] benchmarked Apache’s web
server, the current solution [27] does not provide a
curated image for the Apache’s web server. Compil-
ing the webserver from source and executing it inside
Scone results in the same behavior as SGX-LKL, the
connection hanged.

Our test does not include TaLoS [36] as we could
not compile the webserver against it due to missing
functions in the cryptography library when built-in
hardware mode.

6. Threat Model

In this section, we provide a threat analysis of the
proposed system. We identify potential threats of
each implementation and define how an attacker may
attempt to exploit the system and the limitations
we introduce to block that thread.

Key Negotiation

The impersonation attack on the HTTPS protocol
is normally due to the unauthorized access to the
private key on the server [51] which can affect either
current and previous communications. In order to
mitigate this, we implemented OpenSSL inside SGX,
giving an extra layer of security to the private and
symmetric key management.

Physical Access to the Machine

If an attacker is able to compromise the server, in
our first approach the attacker can modify the code
of the web-server to read the data before and after it
is encrypted and decrypted respectively. In our sec-
ond implementation the previous attack would also
viable, and they would also have access to the sym-
metric key established for the TLS connection as it
is left exposed. This allows an attacker to be able to
access the information of established connections but
not the previous ones.

In this new scenario, the attacker will have clear
limitations to access the private key, meaning that
even if the system is compromised, the private key’s
security is never compromised. The attacker can-
not, without enclave’s knowledge, maliciously utilize
the private key to authenticate themselves against
other parties(e.g. establishing new connections to the
clients or other micro-services).

DoS scenario

Denial-of-service attack limits the machine or net-
work resource unavailable to its real users by tem-
porarily disrupting services of a network component
connected to the Internet. In this scenario, our im-
plementation through an OpenSSL Engine focuses
on mitigating the delay associated with manipulat-
ing the private key. As we can see in Section 5, this
implementation has a negligible performance impact
on the web server, meaning that your solutions would
not be the bottleneck, by Intel SGX, in case of a DoS
attack to the apache server.

7. Conclusion and Future Work

In this Section, we overview our work and results
accomplished throughout this work. We start by
making a brief overview of the research and devel-
opment made throughout our work, commenting on
the goals achieved and complexity of each project.
We then talk about the results obtained, their effec-
tiveness and viability. Lastly, we hint on possible
future directions of this work, as an ongoing effort to
minimize the impact on performance by secure en-
claves.
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7.1. Research and Development

Despite our efforts, we struggled to find applica-
tions that utilized Intel SGX. Instead, we found many
solutions that either automatically porting applica-
tions [2] or ran unmodified applications inside Intel
SGX [4, 3, 6, 5]. As seen by the results obtained in
Chapter 5, some of these solutions introduce limita-
tions that only allow certain types of applications to
run inside SGX.

Given this state-of-affairs, we decided to port some
applications to utilize Intel SGX through the SGX
SDK and compare how these would perform rela-
tively to their original counterparts running without
any form of support from Intel SGX.

The Apache’s web server can secure connections
via TLS through a separate module called mod ssl.
Porting this module was harder than expected, tak-
ing a considerable portion of the time spent on this
work. We encountered several issues, ranging from
finding a compatible library with it and Intel SGX,
to modifying the cryptography library to use it from
untrusted code and through its OpenSSL compatibil-
ity layer.

Developing the Keystore for Intel SGX took sig-
nificantly less effort than porting mod ssl, with the
harder task being modification of the OpenSSL En-
gine with proper documentation available.

Additionally, in Section 4.1, we also identified some
issues with Intel’s SGX cryptography library, TaLoS,
and explained why it would not be suitable for our
purposes.

7.2. Results

We successfully integrated the mod ssl with Wolf-
SSL and Intel SGX so that the termination of the
TLS connection is made within a secure enclave to
protect both the private key and the generated sym-
metric key during the handshake. However, this pro-
tection comes with a great performance penalty com-
pared to both the original code of the module and
Graphene-SGX, decreasing the performance as much
as 90% and 70%, respectively.

Our second approach was aimed to guarantee se-
crecy of the private keys and involved implement-
ing a Keystore in Intel SGX and integrating with

an OpenSSL engine so that applications could use it
transparently. Applying this solution to the Apache
webserver resulted in no measurable overhead when
compared to the unmodified version while performing
significantly better than Graphene-SGX. This solu-
tion’s caveat is that it does not protect the symmetric
key agreed upon during the TLS handshake. Table
2 shows that there is, in fact, some overhead in our
solution, but it was not significant enough to affect
the web server.

We were limited to a single Intel SGX capable ma-
chine to test our solutions and the others. Addition-
ally, we could not compile a Linux kernel with KVM
supporting Intel SGX for guest virtual machines to
analyze how Intel SGX would perform in a cloud-
like scenario, limiting us to only being able to utilize
docker.

Given our second approach versatility and perfor-
mance, it is harder to recommend the first implemen-
tation, which has an inferior performance and may
make it harder to port future updates made to the
original mod ssl. While the first solution does pro-
tect the TLS connection inside the secure enclave, an
attacker still has access to the web server’s code and
memory, meaning the encrypted and decrypted data
can be read on the read and write callbacks of the web
server, which means the protection is not that much
greater when compared to the implemented OpenSSL
Engine.

7.3. Future Work

Although we achieved our goals and utilized In-
tel SGX to increase key secrecy in real-world scenar-
ios, our solution is not without limitations, pointed
throughout this paper. In the future, we would like
to address these limitations.

Asynchronous Calls

All our solutions, for simplicity, implemented syn-
chronous function calls to and from the enclave. We
acknowledge that this is not ideal and brings a signif-
icant overhead to certain work scenarios. TaLoS [36]
has shown that the implementation of asynchronous
has improved performance on their workload by as
much as 117%. In Section 5.1, we can see that other
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solutions like Scone [3] and [5], which implemented
asynchronous function calls perform significantly bet-
ter than our solution when a high amount of enclave
transitions are made. To mitigate some of our solu-
tions’ performance penalty future work could imple-
ment asynchronous function calls.

Public-key Cryptography Support

Due to time constraints, the solution presented
in Section 4.2 only implemented support for RSA
public-key cryptography. Consequently, applications
utilizing our engine are limited to RSA public-key
cryptography. Future work of this solution should be
able to support other public-key cryptography algo-
rithms such as Elliptic-curve cryptography.
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Appendix A. Read and Write Primitives
within Intel SGX

Under normal circumstances the following function
declarations would not be considered a security risk
in a program as they perform normal operations nec-
essary for the normal execution of the program. A
problem arises however when these functions are ex-
posed to untrusted code from the secure enclave, an
attacker can pass an arbitrary pointer to the func-
tion, which will cause a read or write from memory,
ultimately exposing the secure memory to untrusted
code, which can be used to extract secrets from the
enclave.

Appendix A.1. Read Primitive

int wolfSSL_get_fd(const WOLFSSL* ssl)

{

int fd = -1;

if (ssl) {

fd = ssl->rfd;

}

return fd;

}

If we analyze at a lower level of what the processor
does in this function we can see that it will add the
offset of rfd in the structure WOLFSSL to the pointer
provided by the variable ssl, read the contents of the
resulting address, and return it. As C does give any
guarantees that the passed pointer is actually of the
type WOLFSSL, an attacker could pass an arbitrary
pointer to this exposed function, allowing access to
the otherwise inaccessible memory region of the en-
clave.

Appendix A.2. Write Primitive

int wolfSSL_CTX_set_TicketHint

(WOLFSSL_CTX* ctx, int hint)

{

if (ctx == NULL)

return BAD_FUNC_ARG;

ctx->ticketHint = hint;

return WOLFSSL_SUCCESS;

}

Similarly to the read primitive, the method wolf-
SSL CTX set TicketHint shows a write primitive to
the secure memory if exposed to untrusted code. The
attacker is able to write 4 bytes, the size of an integer
to the address pointed by the variable ctx plus the
offset of ticketHint in the WOLFSSL CTX structure.

Appendix B. Developer Notes

This appendix contains a few notes to help explain
the logic of our implementations through this work.

21



Appendix B.1. Callback handling from trusted to
unstrusted code

//unstrusted code

int do_BIO_meth_read_cb(BIO bioId,

char *out, int inl, void* callback)

{

int(*f)(BIO, char*, int) = callback;

return f(bioId, out, inl);

}

//trusted code

int BIO_meth_set_read_callback_handler

(WOLFSSL_BIO *bio, char *in, int inl)

{

WOLFSSL_BIO_IDENTIFIER bioId =

MAP_GET(WolfBioMapInverse, bio);

WOLFSSL_BIO_METHOD* biom = bio->method;

void** array =

GetBioCallbackArray(biom);

int retval = 0;

do_BIO_meth_read_cb(&retval, bioId,

in, inl,

array[BIO_READ_CALLBACK_INDEX]);

return retval;

}

int sgx_BIO_meth_set_read

(WOLFSSL_BIO_METHOD_IDENTIFIER biomId,

void* callback)

{

WOLFSSL_BIO_METHOD* biom =

MAP_GET(WolfBioMethodMap, biomId);

if(biom == NULL || callback == NULL)

return WOLFSSL_FAILURE;

void ** array =

CreateBioCallbackArray(biom);

array[BIO_WRITE_CALLBACK_INDEX] =

callback;

return wolfSSL_BIO_meth_set_read(biom,

&BIO_meth_set_read_callback_handler);

}

The code snippet above shows how we handle the
callbacks from trusted to untrusted code. As In-
tel SGX can not jump between trust and untrusted
without first issuing a special instruction, steps must
be taken to accommodate for this requirement. The
SGX SDK partially abstracts this by creating proxy
functions which replaces the return value that indi-
cates if the call was successful[52] and moving the
real return value to the first parameter as a pointer.
When the application wishes to register a callback the
function sgx BIO meth set read is called, this func-
tion will store the callback in a callback array for
the specified BIO METHOD object and instead reg-
ister a special stub that resided in trusted code with
the cryptography library. When the stub function
is called, we resolve the actual function to be called
within untrusted code through the aforementioned
array and forward the function pointer to a proxy
function in untrusted code, ultimately calling the reg-
istered function.

Appendix B.2. OpenSSL Engine Configuration

[openssl_init]

engines=engine_section

[engine_section]

sgxkeystore = sgxkeystore_section

[sgxkeystore_section]

engine_id = sgxkeystore

dynamic_path = /usr/lib/x86_64-linux-gnu

/engines-1.1/sgxkeystore.so

init = 0

For the solution in Section 4.2 to be usable we must
tell OpenSSL about our engine, this can be done by
modifying its configuration, in our case in the file
/etc/ssl/openssl.cnf. In this file we specify which en-
gines to be aware of on initialization, its id, the path
of the binary and if the engine should be automati-
cally initialized or if the application should do it.

Appendix B.3. Utilizing an OpenSSL engine from
command line

$ openssl rsautl -engine sgxkeystore

-keyform engine -inkey
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sgxkeystore:testkey.pem.sealed

-decrypt -in key.b in.enc -out key.bin2

$ openssl dgst -engine sgxkeystore

-keyform engine -sign

sgxkeystore:testkey.pem.sealed

-out signature.bin -sha256 foo.txt

After configuring the engine, it can even be used via
command line to perform cryptographic operations.
In order to do that the engine must be specified as
well as the key format, via the -engine and -keyform
options.

Appendix B.4. Patch to Support Another Engine on
Apache Web Server

--- ssl_util.c

+++ ssl_util.c.sgxkeystore

@@ -477,7 +477,7 @@

{

#if defined(HAVE_OPENSSL_ENGINE_H) \

&& defined(HAVE_ENGINE_INIT)

/* ### Can handle any other

special ENGINE key names here? */

- return strncmp(name, "pkcs11:", 7) == 0;

+ return strncmp(name, "pkcs11:", 7) == 0

+ || strncmp(name, "sgxkeystore:", 12)==0;

#else

return 0;

#endif

Since Apache’s web server already contains support
for pkcs#11 devices and because it uses the prefix
before the colon as the engine id, adding support for
our engine required only a simple patch to include
our engine id as a known engine.
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